
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
24/May/2001

2. REPORT TYPE
DISSERTATION

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
FAULT DETECTION AND MODEL IDENTIFICATION IN LINEAR
DYANIMICAL SYSTEMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
MAJ HORTON KIRK G

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NORTH CAROLINA STATE UNIVERSITY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

CI01-79

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. SUPPLEMENTARY NOTES

14. ABSTRACT

20010720 034
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

164

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code!

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

FAULT DETECTION AND MODEL IDENTIFICATION IN
LINEAR DYNAMICAL SYSTEMS

BY

KIRK GERRITT HORTON

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OPERATIONS RESEARCH PROGRAM

RALEIGH, NORTH CAROLINA

FEBRUARY 2001

APPROVED BY:

S. L. CAMPBELL

CHAIR OF ADVISORY COMMITTEE

I R SMTTH

K. ITO T. TRAN

^V^^C^v^-
E. CHUKWU

Abstract

Horton, Kirk Gerritt. Fault Detection and Model Identification in Linear Dynamical

Systems. (Under the direction of Dr. Stephen La Vern Campbell.)

Linear dynamical systems, Ex' + Fx = f(t), in which E is singular, are useful in a

wide variety of applications. Because of this wide spread applicability, much research

has been done recently to develop theory for the design of linear dynamical systems.

A key aspect of system design is fault detection and isolation (FDI). One avenue of

FDI is via the multi-model approach, in which the parameters of the nominal, unfailed

model of the system are known, as well as the parameters of one or more fault models.

The design goal is to obtain an indicator for when a fault has occurred, and, when

more than one type is possible, which type of fault it is. A choice that must be made

in the system design is how to model noise. One way is as a bounded energy signal.

This approach places very few restrictions on the types of noisy systems which can

be addressed, requiring no complex modeling requirement.

This thesis applies the multi-model approach to FDI in linear dynamical systems,

modeling noise as bounded energy signals. A complete algorithm is developed, re-

quiring very little on-line computation, with which nearly perfect fault detection and

isolation over a finite horizon is attained. The algorithm applies techniques to convert

complex system relationships into necessary and sufficient conditions for the solutions

to optimal control problems. The first such problem provides the fault indicator via

the minimum energy detection signal, while the second problem provides for fault

isolation via the separating hyperplane. The algorithm is implemented and tested

on a suite of examples in commercial optimization software. The algorithm is shown

to have promise in nonlinear problems, time varying problems, and certain types of

linear problems for which existing theory is not suitable.

Abstract

Horton, Kirk Gerritt. Fault Detection and Model Identification in Linear Dynamical

Systems. (Under the direction of Dr. Stephen La Vern Campbell.)

Linear dynamical systems, Ex' + Fx = f(t), in which E is singular, are useful in a

wide variety of applications. Because of this wide spread applicability, much research

has been done recently to develop theory for the design of linear dynamical systems.

A key aspect of system design is fault detection and isolation (FDI). One avenue of

FDI is via the multi-model approach, in which the parameters of the nominal, unfailed

model of the system are known, as well as the parameters of one or more fault models.

The design goal is to obtain an indicator for when a fault has occurred, and, when

more than one type is possible, which type of fault it is. A choice that must be made

in the system design is how to model noise. One way is as a bounded energy signal.

This approach places very few restrictions on the types of noisy systems which can

be addressed, requiring no complex modeling requirement.

This thesis applies the multi-model approach to FDI in linear dynamical systems,

modeling noise as bounded energy signals. A complete algorithm is developed, re-

quiring very little on-line computation, with which nearly perfect fault detection and

isolation over a finite horizon is attained. The algorithm applies techniques to convert

complex system relationships into necessary and sufficient conditions for the solutions

to optimal control problems. The first such problem provides the fault indicator via

the minimum energy detection signal, while the second problem provides for fault

isolation via the separating hyperplane. The algorithm is implemented and tested

on a suite of examples in commercial optimization software. The algorithm is shown

to have promise in nonlinear problems, time varying problems, and certain types of

linear problems for which existing theory is not suitable.

Abstract

Horton, Kirk Gerritt. Fault Detection and Model Identification in Linear Dynamical

Systems. (Under the direction of Dr. Stephen La Vern Campbell.)

Linear dynamical systems, Ex' + Fx = /(£), in which E is singular, are useful in a

wide variety of applications. Because of this wide spread applicability, much research

has been done recently to develop theory for the design of linear dynamical systems.

A key aspect of system design is fault detection and isolation (FDI). One avenue of

FDI is via the multi-model approach, in which the parameters of the nominal, unfailed

model of the system are known, as well as the parameters of one or more fault models.

The design goal is to obtain an indicator for when a fault has occurred, and, when

more than one type is possible, which type of fault it is. A choice that must be made

in the system design is how to model noise. One way is as a bounded energy signal.

This approach places very few restrictions on the types of noisy systems which can

be addressed, requiring no complex modeling requirement.

This thesis applies the multi-model approach to FDI in linear dynamical systems,

modeling noise as bounded energy signals. A complete algorithm is developed, re-

quiring very little on-line computation, with which nearly perfect fault detection and

isolation over a finite horizon is attained. The algorithm applies techniques to convert

complex system relationships into necessary and sufficient conditions for the solutions

to optimal control problems. The first such problem provides the fault indicator via

the minimum energy detection signal, while the second problem provides for fault

isolation via the separating hyperplane. The algorithm is implemented and tested

on a suite of examples in commercial optimization software. The algorithm is shown

to have promise in nonlinear problems, time varying problems, and certain types of

linear problems for which existing theory is not suitable.

Biography

Kirk Gerritt Horton was born September 14, 1963 in Paterson, New Jersey. He grew

up attending public schools with his three sisters in West Milford, New Jersey. He

was the valedictorian of the West Milford High School graduating class of 1981.

He received his B. Engineering degree with a major in Electrical Engineering and

Computer Science from Stevens Institute of Technology in Hoboken, New Jersey in

1985. Shortly after graduation he received a commission in the United States Air

Force from AFROTC. From 1985 to 1993 he was a pilot, flying the T-37 and the T-38

trainer, then the RF-4C reconnaissance/fighter, and then the F-111E fighter/bomber.

He flew 19 missions over enemy territory in Iraq during Operation Desert Storm,

receiving the AF Distinguished Flying Cross for one of those missions. From 1993 to

1995 he attended the Air Force Institute of Technology, earning a M. S. in Operations

Analysis. From 1995 to 1997 he piloted the F-117A Stealth Fighter, ending that tour

as an instructor in the aircraft. He arrived at N. C. State in 1997 to pursue a Ph. D.

in Operations Research. He is currently serving on active duty as a Major in the Air

Force.

The author is married to the former Susan Elaine Pringels, of Sumter, S. C. and

they have two daughters, Madisyn and Ashlyn.

Acknowledgements

As countless students have before me, I owe an incredible amount of gratitude to my

advisor, Dr. Stephen L. Campbell. An exceptional teacher, a meticulous researcher,

a prolific writer, an accomplished artist, and a natural conversationalist, he guided

me through the morass of graduate study with a firm but gentle hand. Without his

expertise I would not have been able to complete this project.

I am also grateful to Dr. Ralph Smith, Dr. Hien T. Tran, Dr. Kazufumi Ito, and Dr.

Ethelbert Chukwu for serving on my committee. Their mathematical and Operations

Research experience were invaluable in ensuring the accuracy of my research.

I would like to thank the United States Air Force, and in particular the faculty

and staff at the Air Force Institute of Technology for preparing and selecting me for

the program that allowed me to attend North Carolina State University to pursue

my degree.

Finally, I must acknowledge my wife, Susan, and my daughters, Madisyn and

Ashlyn. Without their love and support none of this would have been possible, nor

would it have been worth doing. I pray that all of our father's blessings will be poured

out on them as we travel around the world serving our country and spreading the

Good News.

in

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction and Review of Prior Research 1
1.1 Linear Descriptor Systems 2

1.1.1 Basic Theory 2
1.1.2 Numerical Solutions 7

1.2 Fault Detection and Isolation 11
1.2.1 Basic Theory 11
1.2.2 Feedback and Observer Design 13
1.2.3 Optimal Control 16
1.2.4 if«, Control 18
1.2.5 Prior Research 19
1.2.6 Conclusion 24

1.3 Outline of Thesis 24
1.4 Contributions of Thesis 25

2 Fault Detection via the Detection Signal 26
2.1 The Problem - Finding the Minimum Energy Detection Signal 26

2.1.1 Problem Setup 27
2.1.2 Formulation as an Optimal Control Problem 30
2.1.3 Problem Statement 37

2.2 Necessary Conditions 37
2.2.1 Computing the Necessary Conditions 38
2.2.2 Riccati Form of Necessary Conditions 39
2.2.3 Problem Formulation in Terms of the Necessary Conditions . . 49
2.2.4 Sufficient Conditions 52

2.3 The Minimum Energy Detection Signal Algorithm 53

IV

2.4 Variations 58
2.4.1 Multiple Fault Models 59
2.4.2 Unreduced Model 61
2.4.3 Controlled Systems 63
2.4.4 Alternative Cost Functions 64
2.4.5 Knowledge of Initial Conditions 65
2.4.6 Conclusion 66

Model Identification via the Separating Hyperplane 68
3.1 The Problem - Determining the Origin of a Given Output 68

3.1.1 Problem Setup 69
3.1.2 The Separating Hyperplane 71
3.1.3 Approximating the Separating Hyperplane 72
3.1.4 Problem Statement 74

3.2 The Model Identification Algorithm 76
3.3 Variations 79

3.3.1 Multiple fault models 79
3.3.2 Alternative Formulations 80
3.3.3 Controlled Systems 81
3.3.4 Alternative Cost Functions 81
3.3.5 Knowledge of Initial Conditions 81
3.3.6 Conclusion 82

Examples and Analysis of Results 83
4.1 The Complete Problem and Algorithm 83
4.2 Introduction of Software 87

4.2.1 SOCS Parameters 88
4.2.2 Choosing a Value of e 90

4.3 Introduction of Examples 90
4.4 One-Dimensional State Examples 92

4.4.1 Primary One-Dimensional Example 93
4.4.2 Other One-Dimensional Examples 99

4.5 Two-Dimensional State Examples 103
4.5.1 Primary Two-Dimensional Example 104
4.5.2 Other Two-Dimensional Examples 108
4.5.3 Common Mode Two-Dimensional Example 115

4.6 Industrial Example 118
4.7 Multiple Fault Model Examples 121

4.7.1 One-Dimensional Example 121
4.7.2 Two-Dimensional Example 124

4.8 Conclusion 125

5 Future Work and Conclusions 129
5.1 Future Work 129

5.1.1 The Half-Infinite Interval 130
5.1.2 Linear Time Varying Models 131
5.1.3 Nonlinear Models 132
5.1.4 Independent Noise Bounds 135
5.1.5 Sensitivity Issues 135

5.2 Conclusions 136

List of References 139

A Software Drivers 145
A.l Model Reduction 145
A.2 Fortran Code Generation 148
A.3 Optimization via the FDMI Algorithm 149
A.4 Analysis and Presentation of Results 163

A.4.1 Detection Signal Phase Processing 163
A.4.2 Model Identification Phase Processing 164

VI

List of Tables

4.1 7* and \\v\\ for Example 4.1: */ = 1,10,20,100 95
4.2 Formulation comparison of Example 4.1: tf = 1,10,20 98
4.3 7* and ||u|| for Examples 4.1-4.4: tf = 1,10 101
4.4 Performance comparison of Example 4.5 on various time intervals . . 107
4.5 Performance comparison of Examples 4.2-4.10: tf = 1 114
4.6 Performance comparison of Examples 4.2-4.10: tf = 10 114

Vll

List of Figures

3.1 Output sets under application of v and 5v, 6 > 1 73
3.2 Output sets under full and reduced noise contributions 75

4.1 Typical variation of ae(t) with e 91
4.2 v, for Example 4.1: tf = 1 (left), tf = 10 (right) 93
4.3 v for Example 4.1: tf = 20 (left), i, = 100 (right) 94
4.4 v for Example 4.1: t/ = 20,100 94
4.5 7* for Example 4.1 as a function oft/ 95
4.6 Rescaledw for Example 4.1: t/= 1,10,20,100 96
4.7 ye(t) and ae(t) for Example 4.1: e = 0.3,0.5,0.7,0.9 97
4.8 v for Examples 4.2 (left), 4.3 (center), 4.4 (right): tf = 1 101
4.9 u for Examples 4.1-4.4: tf = 1 102
4.10 ye(t) and a£(t) for Example 4.4: 6 = 0.3,0.5,0.7,0.9 103
4.11 v for Example 4.5: tf = 1 (left) and tf = 20 (right) 105
4.12 w for Example 4.5: tf = 1,2,4, 6,8,10, 20 105
4.13 7* for Example 4.5 as a function oft/ (left) and compared with Exam-

ple 4.1 (right) 107
4.14 ye(t) and ac(t) for Example 4.5: e = 0.3,0.5,0.7,0.9 108
4.15 v for Examples 4.5-4.10: tf = 1 (left), tf = 10 (right) 112
4.16 v for Examples 4.2,4.3,4.4,4.9: tf = 10 113
4.17 Normalized v for Examples 4.5-4.10: tf = 10 113
4.18 y£(t) and a£(«) for Example 4.10: e = 0.7 115
4.19 Components of v for Example 4.11: tj = 5 117
4.20 Components of ye(t) and ac(t) for Example 4.11: e = 0.7 117
4.21 Components of v for Example 4.12: tj = 1 120
4.22 Components of yc(t) and ae(t) for Example 4.12: e = 0.7 120
4.23 v for Example 4.13 sequential vs. simultaneous (left) and full interval

two-model vs. simultaneous (right) 123
4.24 ye(t) and ae(t) for Example 4.13: sequential solve 123
4.25 ye(t) and ae(t) for Example 4.13: simultaneous solve 124

viii

4.26 v for Example 4.14 sequential vs. simultaneous (left) and full interval
two-model vs. simultaneous (right) 126

4.27 y€(t) and ae(t) for Example 4.14: sequential 126
4.28 yt(t) and ae(t) for Example 4.14: simultaneous 127

IX

Chapter 1

Introduction and Review of Prior

Research

Models of dynamical systems that consist of a set of linear differential and algebraic

equations (DAEs)

Ez' + Fz = f(t) (1.1)

in which the (square) matrix E is singular, are called linear descriptor systems. Many

systems throughout a wide variety of applications are most easily described as linear

descriptor systems. Variational problems subject to constraints, such as the equations

of motion for a robotic arm, can often be written as descriptor systems. Network

modeling problems, as in electrical circuit design, are another example. The list

continues with model reduction problems, singular perturbations, and discretizations

of partial differential equations, just to name a few. (See [5, 8] for an in-depth

description of applications and examples.) Because of this wide spread applicability,

much research has been done recently involving linear DAEs.

A key aspect of system design in linear DAE modeled systems is fault detection

and isolation (FDI). One avenue of FDI is via the multi-model approach, in which

the parameters of the nominal, unfailed model of the system are known, as well as

Chapter 1. Introduction and Review of Prior Research 2

the parameters of one or more fault models. The design goal is to obtain an indicator

that tells the operator when a fault has occurred, and, when more than one type is

possible, which type of fault it is.

Another aspect of system design is the modeling of noise. One way to model

noise is as a bounded energy signal. This approach places very few restrictions on the

types of noisy systems which can be addressed. It also presents no complex modeling

requirement, a very useful computational tool of which we can take full advantage.

In this thesis we apply the multi-model approach to FDI in linear descriptor

systems, modeling noise as bounded energy signals. The combination appears to

be under-explored, in that very little research seems to exist that uses both the

multi-model approach and bounded energy noise. We develop a complete algorithm,

requiring very little on-line computation by an operator, with which nearly perfect

fault detection and isolation over a finite horizon is attained.

1.1 Linear Descriptor Systems

We begin with a short introduction to descriptor systems, the basic theory and several

numerical methods used to obtain solutions.

1.1.1 Basic Theory

As described above, DAEs occur in many applications. Models that consist of a set

of ordinary differential equations (ODEs) often are first written as DAEs. A DAE

is manipulated through differentiation and substitution to convert it to ODE form.

Consider

x' = ax + by (1.2a)

y = cx + d (1.2b)

Chapter 1. Introduction and Review of Prior Research 3

in which a, b, c, and d are scalar constants. Equation (1.2) consists of a differential

equation (1.2a) and an algebraic constraint (1.2b). The Jacobian of (1.2) with respect

to x', y' is

r 1 0

0 0

which is singular. By differentiating (1.2b) we obtain the full system

x' — ax + by (1.3a)

y = cx + d (1.3b)

y' = ex'. (1.3c)

We can substitute (1.3b) into (1.3a) to obtain the ODE

x' = (a + bc)x + bd (1.4a)

y' = ex' (1.4b)

the solution of which is easily obtained.

Frequently, reasons exist for not attempting to manipulate a system like (1.2) into

explicit (ODE) form. First, physical problems initially modeled as DAEs contain

relationships between variables of interest. Changing to an explicit model may result

in less meaningful variables, as well as a loss of the importance of the relationships

between those variables. In addition, sparsity is usually lost. Numerical methods

that rely on the sparsity of a DAE may not be suitable for solving the ODE that

is obtained by differentiation and substitution. Finally, it may not be easy or even

possible to convert a complex system into ODE form. When it is possible, it might be

easier to solve the DAE directly than to do the mathematical manipulation necessary

to convert it to an ODE. See [5] for a more detailed explanation as to why the DAE

form of a model may be preferred over the ODE form.

Chapter 1. Introduction and Review of Prior Research 4

It is due to these reasons, among others, that the base of research in DAEs has

continuously grown over the last several years. At the heart of the theory are two key

concepts, solvability and the uniform differentiation index [5].

DEFINITION 1.1. The system (1.1), where E and F are m x m matrices, is

solvable on an interval if for every m-times differentiable f(t), there is at least one

continuously differentiable solution to (1.1). In addition, solutions are defined on the

entire interval and are uniquely determined by their value at any t in the interval.

We will return to the necessary and sufficient conditions for solvability of certain

types of DAEs a bit later.

DEFINITION 1.2. The minimum number of times that all or part of (1.1) must

be differentiated with respect to t in order to determine z' as a continuous function of

z,t is the index, v, of DAE (1.1).

Example (1.2) is an index one DAE. Numerical methods are well developed for

index one DAEs. Higher index problems are notoriously more difficult to solve via

numerical methods. Fortunately, all of the DAEs we will deal with in this thesis are

of index one.

Of the several special structural forms for DAEs found in the literature, two will

be of interest in this research:

• Linear Time Invariant DAE

Ez' + Fz = f(t) (1.5)

• Linear Time Varying DAE

E(t)z' + F(t)z = f(t) (1.6)

We mention three other types for completeness:

• Linear in the derivative, nonlinear DAE

E(z)z' + F(z)z = f(t) (1.7)

Chapter 1. Introduction and Review of Prior Research

• Semi-Explicit (nonlinear) DAE

z' = f[z(t),u(t),t]

0 = g[z{t),u{t),t]

• Fully Implicit (nonlinear) DAE

F(z',z,t) = 0

(1.8a)

(1.8b)

(1.9)

The extension of our algorithm to these problems will be left to future research.

The theory for (1.5) and (1.6) is fairly well understood. For (1.5), solvability is

expressed in terms of a matrix pencil For square matrices E and F, and complex

parameter A, XE + F is called a matrix pencil. If its determinant is not identically

zero as a function of A, then the pencil XE + F is said to be regular. Equation (1.5)

is solvable if and only if XE + F is a regular pencil [5]. If (1.5) is solvable we can let

z — Qw and premultiply by P so that (1.5) becomes

PEQw' + PFQw = Pf(t)=g{t) (1.10)

where P, Q are nonsingular matrices such that

I 0
PEQ

0 N
PFQ

C 0

0 /

AT is a nilpotent matrix the index of which is the same as the uniform differentiation

index of DAE (1.5). The system is then decoupled, and can be written as

w'l + Cwl = gl{t) (1.11a)

Nw'2 + w2 = g2{t). (1.11b)

Equation (1.11a) is an ODE for which a solution exists for any initial value of 7/;j and

any continuous forcing function gi(t). The unique solution to (1.11b) is

w2 = (ND + I)-1g2(t) = ^(-lyA^0 (0
i=0

Chapter 1. Introduction and Review of Prior Research

where v is the index, or degree of nilpotency of N, and D is the differentiation

operator. Note that the initial values of w2 are completely determined.

In the linear time-varying case, (1.6), a similar result holds. While the nature of

the matrix pencil XE(t) + F(t) is no longer an indicator of solvability, the form of

(1.11) is still important in linear time-varying DAEs.

DEFINITION 1.3. The system (1.6) is in standard canonical form if it is in the

form

I 0

0 N(t)

C(t) 0
z' +

0 /
* = /(*) (1.12)

where N is strictly lower (or upper) triangular.

If E(t), F(t) are real analytic, then (1.6) is solvable if and only if, after linear

time-varying coordinate changes, it can be written as (1.12). The problem exists in

the difficulty of finding those coordinate changes that allow us to write the DAE in

standard canonical form.

For the other three cases mentioned above, (1.7)-(1.9), the theory is much newer

and also much less understood. For the purpose of this thesis, it is sufficient to note

that the concepts presented above serve as a basis for the development of the theory

for these cases. It should be noted that while this newer theory is beyond the scope of

this thesis, the common starting point serves as a good indicator that the algorithm

developed herein for linear time-invariant and linear time-varying DAEs may have

applications in the more general case as well.

While there are many more interesting and useful items in the theory of DAEs,

these few properties and definitions that we have mentioned will suffice for our pur-

poses. For a complete treatment of DAEs see [5, 7, 8, 9, 10, 13, 14].

Chapter 1. Introduction and Review of Prior Research 7

1.1.2 Numerical Solutions

While it is not our goal to present an exhaustive overview of the numerical meth-

ods that can be used to solve descriptor systems, we briefly mention those methods

which will be used in later chapters. The discretization methods we will review are

those that are used by the commercial software in which we implement the FDI al-

gorithm developed in this thesis, namely the trapezoidal method, the Compressed

Hermite-Simpson method, and the 4-stage implicit Runge-Kutta method. These di-

rect transcription discretizations will be described using the semi-explicit DAE form

(1.8). After discretization, several methods exist for solving the resulting finite di-

mensional problem. Of those methods, only the sparse quadratic program (SQP) will

be described here. While the software, Boeing's Sparse Optimal Control Software

(SOCS), which will be introduced in a later chapter, can solve DAEs via an ana-

lytic transformation, as well as Euler's and linear multistep methods, these schemes

will not be used in this thesis, and thus will not be mentioned here. Many of the

approaches applied to DAEs are described in detail in [5, 13].

For our discussion of discretization and finite dimensional problem solution, con-

sider a simple optimization problem based on the semi-explicit DAE (1.8)

min J\x(t),u(t),t] (1.13a)
t0<t<tf

subject to

x' = f[x(t),u(t),t] (1.13b)

0 = g[x(t),u(t),t}. (1.13c)

Chapter 1. Introduction and Review of Prior Research 8

Discretization

In general, transcription discretization schemes start by dividing the time interval,

[to,tf], into n segments

t0 <h <t2< ... <tn = tf

where the points tk, k = 0, ...n, are referred to as mesh points. Let xk — x(tk) be

the value of a state variable at a mesh point. Likewise, denote the value of a control

at a mesh point as uk = u(tk). Let fk = f(xk,uk,tk) and gk = g(xk,uk,tk) be the

right-hand sides of (1.13b) and (1.13c), respectively. Finally, let hk = tk-tk-i be the

step size for k = 1,..., n.

Utilizing this notation, the trapezoidal method approximates the state equations

(1.13b) and algebraic constraints (1.13c) as

xk = Zik-x + ^Ufc + A-i) (1.14a)

0 = gk. (1.14b)

In the Compressed Hermite-Simpson scheme we denote the value of the control at

the midpoint of a segment as uk = u(tk) where tk = \(tk + tk-i), for k = 1, ...,n. The

discrete approximations for this method are given by

xk = xk-l + ^-(fk + 4fk + fk-i) (1.15a)

0 = gk (1.15b)

where

Ik = f&k,ü,tk)

with

%k = ^(xk-i + xk) + -g-(/fc-i - /*)

Chapter 1. Introduction and Review of Prior Research 9

for k = 1, ...,n. The 4-stage implicit Runge-Kutta discretization uses four intermedi-

ate, implicit steps

c\ = hkf{xk-uuk-i,tk-i) (1.16a)

C2 = hkf(xk-i + -^,ük,tk) (1.16b)

C3 = hkf(xk^i + —,ük,tk) (1.16c)

C4 = hkf(xk-i+C3,uk,tk). (1.16d)

The discrete approximations for this method then become

xk = a;^_i +-(ci+ 2c2 + 2c3+ c4) (1.17a)
6

0 = gk (1.17b)

where uk is defined as before.

These methods have all been proven to converge for index one DAEs, and are

thus appropriate for our purpose [4, 5]. In every case, the result of the discretization,

when combined with the cost function, J, is a sparse nonlinear programming (NLP)

problem. The variables of the problem are the discretized states, xk) controls, uk, and

time, tk, for k = 0, ...n.

Solving the Finite Dimensional Problem

One way to solve this NLP problem, and the approach used by SOCS, is via a SQP

approach [3]. Dropping subscripts for now, let w be the vector of state and control

variables, (x, u), and let F(w, t) be the constraint set resulting from the discretization

of the DAE. That is, (1.14), (1.15), or (1.17), after shifting everything to the right

hand side, becomes

0 = F(w,t).

Chapter 1. Introduction and Review of Prior Research 10

Note that F is a function of the state, control, and time variables at all time steps.

The SQP algorithm requires an initial guess, w°, and forms a new iterate by adding

a scalar multiple, a, of the search direction, p. That is,

w1 = w° + ap.

The search direction is found by solving a quadratic programming (QP) subproblem

defined at the current point. The QP subproblem is defined as

min JIP + -pTHp

subject to

0 = Gp

where Jw is the gradient vector of the cost function, H is an approximation to the

Hessian matrix of the Lagrangian of the NLP (L = J - XTF), and G is the Jacobian

matrix of gradients of the constraints F. The step length, a, is computed such that

H remains positive definite. The QP subproblem can be solved via either a sparse

Schur-Complement method, when appropriate, or a null-space quadratic program-

ming algorithm when G and/or H are dense. Details about the latter can be found

in [3].

An algorithm based on the combination of a direct transcription scheme and the

SQP approach begins with a discretization and an initial guess. The SQP problem is

then solved via the QP subproblem iteration. After each QP subproblem is solved,

the current point is updated and the procedure is repeated. The subproblem itera-

tion terminates when a point is reached which satisfies necessary conditions for a local

minimum within a given set of tolerances. The solution is then compared to that of

the previous discretization iteration, or the initial guess if it is the first iterate. The

mesh is refined, the problem re-discretized and the process is repeated until succes-

sive iterates agree within an additional given set of tolerances. The QP subproblem

Chapter 1. Introduction and Review of Prior Research 11

demonstrates quadratic convergence under the right, conditions [3]. Convergence rates

for the direct transcription schemes, when applied to index one descriptor systems,

are at least quadratic, and, under the right system coefficient conditions, often are

considerably better [5].

1.2 Fault Detection and Isolation

With this basic understanding of the theory of descriptor systems and numerical

methods for their treatment, we now turn our attention to the various approaches for

treating faults in those systems. We begin with basic control theory, and then turn

to feedback, the link between control theory and FDI. Following that is a discussion

of the elements of optimal control and H^ control pertinent to our approach. We

conclude with a discussion of existing research into FDI in descriptor systems and

the methods used.

1.2.1 Basic Theory

A descriptor system is one possible result of a system design problem. The problem

begins with a task to be accomplished, and the design engineer is usually given goals

or objectives that describe the desired performance characteristics of the system along

with a set of constraints by which the system is bound. The development of a system

which accomplishes the objectives while meeting the constraints is the system design

problem.

A particular type of system design problem is the control problem, in which the

goal is to generate certain outputs from the system or to maintain the state of the

system within certain bounds. For example, an engineer might be asked to design

a satellite attitude control system which does not consume too much fuel [1]. The

Chapter 1. Introduction and Review of Prior Research 12

essential elements of such a control problem are

• a mathematical model of the system,

• a desired output,

• a set of admissible controls,

• a performance measure.

Often, as stated above, a descriptor system is the natural product of the system

design problem. For the remainder of this thesis, we will restrict most of our study

to linear time-invariant systems (1.5). Comments extending our algorithm to linear

time-varying systems (1.6) are included in a later chapter.

Consider a system based on the linear time invariant DAE (1.5)

x' = Ax + Bu (1.18a)

y = Cx (1.18b)

where x, y, and u are the state, output, and control vectors, respectively, and the time

interval considered is t £ [t0,tf]. Systems often allow for noise or unknown inputs by

adding a term to each equation of (1.18)

x' = Ax + Bu + M^ (1.19a)

y = Cx + Nfi (1.19b)

where \i is the noise or unknown input, and the matrices M and N are the weight

matrices for the state and output noise, respectively.

Central to the study of system (1.18) are the concepts of controllability, observ-

ability, and stability [6].

DEFINITION 1.4. A linear system is said to be controllable at t0 if it is possible to

find some input function u(t), defined over t <E [*o,*/]; which will transfer the initial

state x(t0) to the origin at some finite time tx G [t0,tf], h > t0. If this is true for all

initial times t0 and all initial states x(t0), the system is completely controllable.

Chapter 1. Introduction and Review of Prior Research 13

DEFINITION 1.5. A linear system is said to be observable at t0 if x(tQ) can, be

determined from the output function y[t0,ti] for t0 £ [to,tf] and t0 < ty, where t\

is some finite time, t\ G [t0, t/]- // this is true for all t0 and x(t0), the system, is

completely observable.

Since controllability describes the ability of the control to affect the system state,

it involves the matrices A and B. Likewise, since observability describes the ability of

the output to characterize the state, it involves the matrices A and C. Simply stated,

the nth-order system (1.18) is controllable if and only if [si - A \ B] has rank n for

all values of s. The same system is observable if and only if [si — AT \ CT] has rank

n for all values of s. Proofs of these characteristics can be found in [6], along with

the requirements for controllability and observability in more complex systems.

The concept of stability helps us deal with systems that may not be controllable

and/or observable. Stability is closely related to the eigenvalues of the A matrix.

Intuitively, a solution to (1.18) is stable if we can stay close to the solution by start-

ing close enough to it via the initial condition. A solution is asymptotically stable if,

by starting close enough, we converge to the solution. A system is stabilizable if all

unstable modes are controllable, and detectable if all unstable modes are observable.

Thus the system can be handled effectively provided all uncontrollable and unobserv-

able modes are stable. This situation can often be tolerated in a control system [6].

For the remainder of this thesis, we will assume that we are dealing only with the

controllable and/or observable modes of control systems.

1.2.2 Feedback and Observer Design

The bridge between basic control theory and fault detection is the concept of feedback.

In a feedback control system, the control, u(t), is modified by information about the

system. Sensors measure either the system state, or the output, and then pass that

Chapter 1. Introduction and Review of Prior Research 14

information to the controller, which adjusts the control based on the input from

the sensors. One of the fundamental goals of feedback compensator design is to

improve the performance of the system through eigenvalue placement. As stated

earlier, stability depends on the eigenvalues of the A matrix. By assigning desirable

values to eigenvalues, system stability can be enhanced. For the state feedback case,

the relation

u{t) = Fv(t) - Kx{t) (1.20)

is used, where the matrix K is called the feedback gain matrix, and F the feed-forward

matrix. Substituting into (1.18), we obtain

x1 = (A-BK)x + BFv (1.21a)

y = Cx. (1.21b)

Clearly, the eigenvalues of the A - BK matrix now determine the stability of the

system. By careful construction of the feedback gain matrix K, the eigenvalues are

assigned the desired values. For the output feedback case, the relation

u(t) = Fv(t) - Ky(t) (1.22)

is used, where the K and F matrices are as defined above. Substituting this relation

into (1.18), we obtain

x' = (A-BKC)x + BFv. (1.23)

Now the eigenvalues of the A - BKC matrix determine the stability of the system.

Unfortunately, due to the presence of the C matrix in this expression, output feedback

usually cannot place all of the eigenvalues of the system. This limitation is present

when the rank of KC is less than the rank of K, i.e., when C is a long matrix. It

should be noted that state feedback may impact the observability of a system, but can

Chapter 1. Introduction and Review of Prior Research 15

have no impact on controllability. Output feedback can impact neither controllability

nor observability of a system [6].

Using feedback, the basic tool for many FDI approaches can be constructed: the

observer. For most systems the only information about the system state is through

the output vector, which often provides only partial information. Thus, output feed-

back is the only option, and not all system eigenvalues can be placed where desired.

To improve system stability in these cases, the most frequently used method is to

reconstruct information about the remaining elements of the state vector through

development of an observer of the system. Consider the observer

x' = Ax + Bu + L{y - Cx) (1.24)

where x is the observer estimate for the state vector. Note that y is the output from

the real system, (1.21), and Cx is the observer output. Subtracting (1.18a), and

letting e = x — x be the observer error, we obtain

e' = {A- LC)e.

Since L is arbitrary and (A, C) is observable, we can guarantee that observer error

goes to zero by selecting L so that A - LC is stable. With this construction, state

feedback is possible using the observer estimate for the state vector. Thus all system

eigenvalues can be placed where desired, and complete control over system stability is

possible. It should be noted that since the complete state vector is reconstructed by

the observer, faults which send the system into unpredicted or undesirable states may

be detectable by such an observer simply by comparing the observer estimate with

those elements of the system state vector which are available. This fault detection

can be accomplished without using the observer to affect any feedback compensator

for the system.

Chapter 1. Introduction and Review of Prior Research 16

1.2.3 Optimal Control

Later, when we develop our algorithm, we will work with a control system which acts

as the constraints in an optimization problem. This optimal control structure is key to

the multi-model approach to FDI, which we will discuss in Section 1.2.5. Accordingly,

we briefly review optimal control theory. While this area of study is vast, the only

topic which we will need for our discussion is the state regulator problem, also called

the linear quadratic regulator (LQR) problem. Consider the optimization problem

1 /"*/

'to

subject to

1 1 ftf

J(x, u) = min -x(tf)
TSfx(tf) + - xTQx + uTRu dt (1.25a)

2 2 Jt

x' = Ax + Bu (1.25b)

as well as some initial conditions at the beginning of the interval, where £/, Q, and

R are the weight matrices for the terminal cost, the trajectory, and the control. It is

assumed that Q is positive semi-definite and R is positive definite. This is one form

of the LQR problem and it is important for three reasons. First, the theory is elegant

and robust. Results are easy to understand and implement in numerical algorithms.

Second, it has strong geometry. J(x, u) is actually an inner product norm with useful

properties. Finally, there are strong physical correlations to this type of problem.

Energy is a quadratic form, as is power.

As with any optimization problem, the LQR problem possesses necessary condi-

tions for a minimum. For the problem (1.25), we construct the Hamiltonian

H{x,X,u) = hxTQx + uTRu) + XT{Ax + Bu) (1.26)

where A is the Lagrange multiplier for the constraints. The Euler equations, which

Chapter 1. Introduction and Review of Prior Research 17

must be satisfied by any extremum of the problem, are

(1.27a)

(1.27b)

(1.27c)

HI = x'

Hi = A'

HI = 0.

When applied to (1.26), we obtain

A' = -Qx-AT\ (1.28a)

Ax + Bu (1.28b) x'

0 = Ru + BT\. (1.28c)

Using (1.28c) and our assumption that R > 0, we can eliminate u from (1.28) to

obtain a set of differential equations in x and A

x' = Ax-BR-lBTX (1.29a)

A' = -Qx-AT\. (1.29b)

While this form will be useful in our algorithm, it is possible to take an additional step

and eliminate A, resulting in a matrix Riccati differential equation for the optimal

control feedback gain matrix. The derivation of the Riccati equation will be detailed

when we develop our algorithm in the next chapter. It should be noted that our

assumptions on the Q and R matrix, while not restrictive in an applicability sense,

guarantee that the extremum which satisfies the necessary conditions represents at

least a local minimum of the cost J(x,u). In fact, Q is often positive definite, and

in that case, the conditions for an extremum are necessary and sufficient. Detailed

discussions of this and other topics in optimal control can be found in [1, 6, 38].

Chapter 1. Introduction and Review of Prior Research 18

1.2.4 #oo Control

.ffoo control in the time domain is similar to optimal control. It takes advantage of

the linear quadratic (LQ) form in addressing significant uncertainties in the energies

of system noises. For bounded energy noise inputs, where little or no other knowledge

is available about the signal, the LQR formulation is an elegant worst-case approach.

The model generally takes the form of (1.19), and all functions are assumed to exist in

the space of square integrable functions, denoted L2. While H^ performance criteria

vary, they all share the structure of the optimal control cost function, that is, they

are all in LQ form.

In this setting, filtering, smoothing, and compensator design are efficiently ac-

complished. Nagpal and Khargonekar [27] apply a filtering and smoothing method

using an H^ performance criterion on both the finite and half-infinite intervals to

accomplish state estimation (filtering) and output smoothing. Tadmor [36] attempts

to find, in LQ game-theoretic terms, the compensator which provides the best control

in response to the worst disturbance. Matrix Riccati equations provide solutions in

each case.

While the structure of our problem is very similar to the H^ problem, several

key differences will become apparent. First, we will solve a different problem. While

Tadmor [36] designs a worst-case compensator, and Nagpal and Khargonekar [27]

solve for the optimal filter and smoother in the face of various initial conditions, we

will solve for the optimal fault detection signal. In addition, while both [27] and

[36] work in single model systems, we will work in a multi-model system. Finally,

while the noise present in our system is also L2, it is not the same kind of signal as

is commonly assumed in H^ control. The impact of these differences will become

significant as our problem is defined and our algorithm developed.

Chapter 1. Introduction and Review of Prior Research 19

1.2.5 Prior Research

In addition to the two approaches mentioned above, fault detection and isolation in

linear control systems has been attempted from many angles. To begin, we note that

there exist two basic types of approaches to FDI: passive and active. In the passive

approach, only monitoring of system performance is allowed. No interaction with the

system occurs, either for material or security reasons. The system states (or outputs)

are measured and compared to "normal" system behavior, generating a residual. The

residual is computed such that it is equal or close to zero when no faults are present,

and much different from zero when a fault occurs. The vast majority of research in

FDI using the passive approach applies observers to generate residuals.

Passive Methods

Nuninger et al. [32] use analytic redundancy in order to detect sensor and actuator

failures or process disturbances. Analytic redundancy attempts to generate a residual

that might contain information about the faults. Two methods for generating the

residual are examined. First, direct residual generation is based on the parity space

approach, using the input-output transfer function (the parity equation). Second,

indirect residual generation is based on output estimation, using an observer to do

state estimation first. The authors apply the first method to known input systems

and the second method to both known and unknown input systems. A drawback of

this approach is that some faults may have no influence on the residuals generated by

either method, so perfect FDI is not attained. Chen and Speyer [15] also use analytic

redundancy, generating a residual via an observer that reconstructs the system state

vector. Their model has the target fault direction explicitly in the detection filter

gain calculations, allowing for enhanced sensitivity of the filter to the target fault.

Chapter 1. Introduction and Review of Prior Research 20

Koenig et al. [24] present a comparative study of several design methods for un-

known input observers (UIO) used for FDI and Correction. Their goal is to design

an integrated approach which can detect, isolate, and correct a large variety of faults

for a desired system with real-time computation constraints. Methods compared are:

failure isolation by using banks of observers (robust to some faults, but sensitive to

others, in combination so that all faults are detectable), failure isolation by observer

pole placement (to create an unknown input fault detection observer), and failure

correction via general structured UIO (design of full order observer to estimate states

as well as unknown inputs). Chung and Speyer [17] develop a game theoretic detec-

tion filter, which is similar to the UIO, that attenuates disturbances, bounding all

signals except the fault to be detected, embedding the exogenous signals into an un-

observable, invariant subspace. The subspace structure is used to reduce the order of

the limiting filter by factoring the invariant subspace out of the state space, resulting

in a lower order filter sensitive only to the fault to be detected. The filter is applied

to the flight control characteristics of the F-16XL and a simple rocket.

The parity relation approach to residual genertion is applied by Youssouf and

Kinnaert [40]. The method is based on the inverse of the map from both unknown

inputs and faults to the observable signals (measured inputs and outputs), using a

variable change in the frequency domain. Tools available for nonsingular systems can

be used on the resulting map. The authors contend that FDI for singular systems

depended previously on state estimation, which put unnecessary requirements on

the plant, as there is no need to reconstruct the entire state vector to do residual

generation. Where Youssouf and Kinnaert [40] apply their method to continuous time

systems, Sauter et al. [35] do the same for the discrete case in mechanical systems,

though the theory and algorithm are completely different. They do state equation

decoupling before residual generation, which is contrary to customary methods. The

decoupling involves separating out the unknown input from the system state instead

Chapter 1. Introduction and Review of Prior Research 21

of from the residual.

Chowdhury and Aravena [16] go in a slightly different direction. They apply a

modular methodology to the area of fast fault detection and classification in dynamical

electrical power systems. Module I is the generation of fault indicators in one of two

ways:

1. model-based, in which a residual is generated using either an accurate mathe-

matical or I/O model of the nominal system, or an I/O model is built on-line,

which is very difficult,

2. model-free, in which detectable variables are measured and enhanced if neces-

sary by signal-processing techniques.

The authors present a model-free orthogonal decomposition based on multirate filter

banks to produce a fault indicator. Module II is the measuring and testing of fault in-

dicators via either statistical test or feedforward neural-network testing. The authors

explore the neural network aspect. Fault classification occurs in module III, another

neural network, the operation of which depends on the existence of a system model.

The emphasis is on model-free methods, those lesser explored and lesser restrictive

cases where models are not available, non-linearities prevent model derivation, or too

many uncertainties exist in the system. These cases appear to hold the most promise

for neural-network applications in fault detection.

Hybrid Passive-Active Methods

Some research has been done using a hybrid of the passive/active approaches. The

passive approach is used to detect faults, then an active approach is used to cor-

rect or compensate for faults through feedback. Zhang and Jiang [43] investigate

the application of integrated fault detection, diagnosis, and reconfigurable control

Chapter 1. Introduction and Review of Prior Research 22

to discrete-time stochastic vertical take-off and landing aircraft systems. A bank of

two-stage adaptive Kaiman filters is used for FDI, and statistical decisions are made

for fault detection, diagnosis and activation of controller reconfiguration. In a related

paper [42], the same authors apply an interacting multiple-model based approach to

the same type of control problem. A finite-state Markov chain is linked to the same

Kaiman filter bank for fault diagnosis. The decision from this process is used to

activate system reconfiguration via eigenstructure assignment.

Active Methods

The drawback inherent in the passive approach is that faults can be masked by the

application of the control. Thus it is possible that a fault could go undiscovered until

it is too late to correct it. In direct contrast, the active approach interacts with the

system on a periodic basis, or at critical times, to detect faults, thus eliminating the

possibility of the presence of undetected faults. The approach uses various types of

interaction with the system to detect faults. A test signal, which is constructed in

such a way that faults are highlighted, is fed into the system. Observation and/or

manipulation of the resulting output is used to make a decision about system faults.

Observers designed to aid in feedback, as well as various other types of feedback

compensators, are examples of the active approach.

Bennett et al. [2] apply speed dependent feedback (a stable time-varying linear

observer) to detect intermittent, short duration faults in bilinear dynamical systems.

The AC drive system for an electric train is considered. These systems experience

abrupt disconnections which introduce severe transient errors and which are hard to

detect due to their short durations. The parity equation approach is not preferred in

this case due to the intermittent nature of the faults. By combining the observer and

Kirchoff's law, a bank of observers is constructed to detect and correct disconnections.

Chapter 1. Introduction and Review of Prior Research 23

This case is an example of the application of a test signal as part of the feedback to

control the system and correct faults.

The multi-model approach is well-suited to the case where it is desirable to apply

a test signal independent of feedback control. The approach relies on the presence of

the system model

x'i = AiXi + Btv + Mifii (1.30a)

y = dxi + Nifii (1.30b)

for i = 0, ...,m, where m is the number of faults expected from the system, and

v is the test signal. A different system model exists, with known parameters, for

each possible fault. It is assumed that any feedback control has been absorbed into

the Ai matrix, thus eliminating the control u from the differential equation. The

difficulties in this approach lie in determining from which model an output y derives,

as well as the computation of system parameters for each fault model. Nikoukhah

[28] presents the use of a test signal for active FDI in discrete-time linear systems

subject to inequality-bounded perturbations. Detectability is required, but when

present, guaranteed FDI is attained. The discrete time case lends itself to recursive

algorithms, and so recursion is used extensively by the author to develop the test

signal. After constructing a test signal that separates outputs into disjoint convex

sets, the author uses the separating hyperplane approach to determine which set a

certain output falls into, and thus whether a fault has occurred. Linear programming

is used to construct the separating hyperplane. Nikoukhah et al. [29] has the same

goal as [28], but goes about it completely differently. Among the differences, fault

isolation is accomplished by a ratio test, and optimal control theory is applied. This

paper is the inspiration for our current research, and thus uses some of the same

techniques we use, but applies them to discrete time control problems. We apply

our methodology to continuous time control problems, which present key theoretic

Chapter 1. Introduction and Review of Prior Research 24

and algorithmic differences. In addition, both [28] and [29] consider only two model

systems, whereas our approach can handle problems with three or more models.

The multi-model approach is also useful with Kaiman filtering. Keller et al. [21]

presents the multi-model approach for fault detection in stochastic systems with un-

known inputs. The method uses the two-stage Kaiman filter with unknown inputs

and constant biases, the first stage of which is bias-free (for fault detection) and the

second stage is a bias filter (for fault isolation). The optimum state estimate is ex-

pressed as the output of the bias-free filter corrected with the output of the bias filter.

Different fault types are detected using a bank of such filters. The two stages of the

filter reduce computational time associated with the presence of multiple faults.

1.2.6 Conclusion

As mentioned in the introduction to this chapter, the combination of the multi-

model approach and the bounded energy noise model seems to be under-explored.

The common thread running through most of the applications mentioned in the last

section is the modeling of noise. [16, 21, 22, 23, 33, 37, 41, 42, 43] model noise as

some type of random variable. Many use filtering or statistical tests to make the fault

decision, and thus do not model noise at all. Only [17, 27, 28, 29, 36] model noise

as bounded energy signals. As we shall see, the bounded energy noise model is very

suited to the multi-model approach, and the combination as developed in this thesis

provides a powerful tool for fault detection and isolation in descriptor systems.

1.3 Outline of Thesis

In the next chapter, we present the theory and algorithm for the fault detection

phase of the problem, along with extensions of the method to variations of the basic

Chapter 1. Introduction and Review of Prior Research 25

problem. Following that, Chapter 3 is the development of the algorithm for the

model identification phase. In Chapter 4, we state the full algorithm, then present

and analyze several examples. Lastly, Chapter 5 is the conclusion and outline of future

research possibilities in this area. Software codes for the algorithm are in Appendix

A.

1.4 Contributions of Thesis

The research in this thesis will appear, or has already appeared in the following

publications:

• S. L. Campbell, K. Horton, R. Nikoukhah, and F. Delebecque, Rapid

Model Selection and the Separability Index, in Proc. 4th IFAC Sympo-

sium on Fault Detection, Supervision and Safety for Technical Processes

(SAFEPROCESS 2000), Budapest, Hungary, June 2000, pp. 1187-1192.

• R. Nikoukhah, F. Delebecque, S. L. Campbell, and K. Horton, Multi-

model Identification and the Separability Index, in Proc. 14th Interna-

tional Symposium of the Mathematical Theory of Networks and Systems

2000, Perpignan, France, June 2000, CDROM.

• R. Nikoukhah, S. L. Campbell, Kirk Horton, and F. Delebecque, Auxiliary

signal design for robust multi-model identification, IEEE Transactions on

Automatic Control, accepted subject to final revision.

• S. L. Campbell, Kirk Horton, R. Nikoukhah, and F. Delebecque, Auxil-

iary signal design for rapid multi-model identification rising optimization,

submitted to Automatica.

Chapter 2

Fault Detection via the Detection Signal

2.1 The Problem - Finding the Minimum Energy

Detection Signal

As introduced in the previous chapter, our goal is to attain near-perfect fault detection

and model identification in linear descriptor systems using the multi-model approach.

This approach allows the treatment of the problem in two steps. In this chapter, our

focus will be on the fault detection step of the problem, while the next chapter will

tackle the model identification step.

Multi-model fault detection and model identification means that we have two or

more possible models for a system, and we decide which one corresponds to the system

based on measurements of the inputs and outputs of the system over a finite test

period, [0,i/]. While other possible test periods exist, we will restrict our discussion

to the finite interval.

In order to exclude all but one model based on input-output measurements, the

input signal must have special properties. A signal with such properties is called a

proper detection signal. For the remainder of the present discussion we will assume

that two possible models exist for the system: the nominal, or unfailed model, and

26

Chapter 2. Fault Detection via the Detection Signal 27

the fault model. This assumption is not restrictive in any way, and later we will

describe how the algorithm can be extended to include the case in which more than

one fault model is present.

2.1.1 Problem Setup

The true model of the system is one of two models

x\ = AiXi + BiV + MiHi (2.1a)

y = dxi + Niin (2.1b)

for i = 0 and 1, and for t > 0, where xt, y, v, and /i; are the system states, output,

detection signal, and noise, respectively. The matrices Ah Bi, Cj, Mh and N{ are

matrices of appropriate dimensions. We assume that v and //; are in L2[0,tj] — L2,

forcing x{ and y to be in L2 as well. While we assume full row rank of the Mj and Nt,

and controllability/observability of the system for computational reasons, there is no

assumption that the dimensions of the state or noise vectors of the two models are the

same. We also assume no a priori information about the system before t = 0, and in

particular no information about ^(0). Thus, unlike some existing theory, in particular

[30], we have no weights on rcj(0). (We will discuss the impact of information about

initial conditions and the subsequent presence of weight matrices on z;(0) later in this

chapter.) In addition, we assume that any feedback control has been absorbed into

the Ai matrices as described in Chapter 1, or else is nulled at t — 0 for the duration of

the test period. Thus, the only common elements of the two models are the output,

y, and the detection signal, v. Note that (2.1) is a linear descriptor system since the

output y is known.

Consider the detection signal v and let A°(v) be the set of possible outputs asso-

ciated with this input if Model 0, the nominal model, is the correct model. Likewise,

Chapter 2. Fault Detection via the Detection Signal 28

let Al{v) be the set of outputs if Model 1, the fault model, is the correct model. Then

perfect model identification based on output measurement implies that

A\v)nA\v) = %. (2.2)

This is achievable thanks to the bounded energy noise model. This noise model can

be expressed as

Siiin) = INI2 = / ' I^WI2 dt < 1, i = 0,1 (2.3)
Jo

where | • | is the (pointwise) Euclidean norm, and thus || • || is the I? norm. In practice

one has bounds ||/ij||2 < K. It is always possible to rescale the Mi, Ni to get K = 1,

so we assume without loss of generality that K = 1.

This expression for the noise allows us to distinguish between the two basic types

of detection signals.

DEFINITION 2.1. The detection signal v is not proper if there exist x0, x\, \i§, \i\,

and y satisfying (2.1) and (2.3). The detection signal v is called proper otherwise.

Thus we say that the L2 vector function v is a proper detection signal if its

application implies that we are always able to distinguish the two candidate models

based on observation y. That is, condition (2.2) is satisfied [30]. Note that v = 0 is

not proper since the zero solution is always in the intersection of (2.2). In addition,

if v is proper then cv is also proper for c > 1, but if v is not proper then there exists

an e > 0 such that cv is also not proper for 0 < c < 1 + e. These facts will be useful

when we develop the optimization problem later in the chapter.

The conditions for the existence of proper detection signals are quite weak. For

their characterization, let

£(/)= feA^f{s)ds (2.4)
Jo

Chapter 2. Fault Detection via the Detection Signal 29

be the solution of z' = AiZ + /, z(0) — 0. Then the solutions to (2.1) are

Xi = d(Biv) + diMitu) + eAi% (2.5a)

y = CibiB^ + CiCiiMiri + Cie^Si + Nitn (2.5b)

for i = 0,1, where & is the free initial condition for X{. Thus the output set for each

model is the sum of three terms

• y{ = dCi(Biv) which is a vector depending linearly on the detection

signal, v,

• {(dCiMi + Ni)Hi : \\fii\\ < 1} which is an open convex set,

• {CieAit£i : f* € 3ftn (or Cn)} which is a finite dimensional subspace of L2.

Because of these facts, and noting that y0 and yx are respectively the outputs of

Model 0 and Model 1 corresponding to zero noise and zero initial state, we see that

the output sets A°(v) and Al{v) are translates by y0 and y\ of bounded open sets.

Since y0 and yx depend linearly on v, either y0 = yi for all v, or y0 - yx can be made

arbitrarily large with proper choice of v. So proper detection signals exist provided

the linear mapping of v to y0 is distinct from the linear mapping of v to yx [30]. In

the time invariant case, this is equivalent to

Co{sI - AQy
lBQ - Cx(sl - AxY'Bx ± 0 (2.6)

for some s.

The amount of energy required for a detection signal to be proper determines the

separability of the output sets A°(v) and Al(v).

DEFINITION 2.2. Let V denote the set of proper detection signals v. Then,

7* = (inf IWI2] 2 (2.7) \vev" J

is called the separability index associated with (2.1).

Chapter 2. Fault Detection via the Detection Signal 30

Thus, (T*)~
2
 is a lower bound on the energy of proper detection signals. Also, the

inverse relationship between the separability index and the proper detection signal

energy indicates that systems with lower energy proper detection signals have a higher

separability index. The separability index is zero if there are no proper detection

signals. Later, the algorithm we develop will compute 7* as the objective function

of an embedded optimal control problem. In Section 2.4.5 we describe an existing

algorithm that computes 7* [30]. Our approach has the advantage of being able to

address several problems that the algorithm in [30] cannot handle.

2.1.2 Formulation as an Optimal Control Problem

Before we describe the algorithm, however, the problem of finding the minimum

energy proper detection signal must be formulated as an optimal control problem.

First, note that for the detection signal v to be not proper, (2.1) must hold as well

as (2.3). We can rewrite (2.3) as

max Utf\Mt)\2dt,Jtf\Mt)\2dt\<l. (2.8)

This expression can also be written as

0</3<l

Thus we obtain a useful characterization of not proper detection signals [30]

LEMMA 2.1. The detection signal v is not proper if and only if

max [tJ ß\ßo(t)\2 + (1 - ß)\fü(t)\2 dt < 1. (2.9)
°<ß<l Jo

infmax f ' ß\^{t)\2 + (1 - ß)\vi(t)\2 dt < 1 (2.10)
°<ß<1 Jo

where the infimum is taken over {xu^y) in L2, subject to (2.1), i = 0,1.

This characterization is useful because the algorithm we develop will compute the

minimum energy proper detection signal by finding the detection signal of smallest

norm that does not satisfy (2.10).

Chapter 2. Fault Detection via the Detection Signal 31

The next step in formulating the computation of the separability index as an

optimal control problem involves dimension reduction. By assumption the N are

both full row rank. Thus, we can perform a constant orthogonal change of coordinates

on the Ni (via a QR decomposition on A^). As a result we obtain

where Ni is invertible, and

Ni = [Ni 0]

Mi = [Mi Mi]

(2.11)

(2.12)

Let ßi = Hi

KßiJ
with the same decomposition as Ni, and subtract (2.1b) for % = 1

from (2.1b) for i = 0. Equation (2.1b) becomes

0 = C0x0 - Cizi + N0Jl0 - Nuh- (2-13)

Now we can solve for either /^ and use the resulting expression to eliminate (2.13) by

substituting it into (2.1a). Solving for JLQ, we obtain

/O Xr,

\x1 0 Al

x0

X\

+

M0 M0N0 Ni 0

0 Mi Mi
Pi + Bo

Bi
v. (2.14)

With the obvious correspondences, the reduced system, no longer a descriptor system,

can be written as

x' = Ax + Bv + M/i. (2.15)

Note that we do not require A to be stable. An unstable A is allowable because it

includes the case in which the original system is stable, the fault model is unstable,

Chapter 2. Fault Detection via the Detection Signal 32

and we desire to detect the fault in a short test period to prevent the instability of

the fault from creating problems for the system.

The characterization of not proper, (2.10), for the reduced system becomes

inf max P(x.u.ß) < 1
0</3<l

(2.16)

where

P{x,ß,ß)
tf

ß(\-N0 C0xQ + N0 ClXl + N0 iV17J1|
2 + |/io|2) +

(l-flGftf + l/Zil2)* (2.17)

and the infimum is now taken over (X:/J) in L2, subject to (2.15).

The third step in the transformation to an optimal control problem involves using

the definition of the Euclidean norm to expand the integrand. After doing so and

combining like terms, we can rewrite (2.17) as

1 /"*/

where

1 is

P(x, fi,ß) = - / xTQx + xTHfi + fFRfi dt
2 Jo

Q = 2ß
CJN/N-'CO -C^N-

T
N-

1
C1

7-T^TF-l ^rr-T^-1.
-CfN, N,C0 CfN, N^d

(2.18)

(2.19)

H = 4/3

^TT-T-^T-l-
0 -CtN0*NQ JVx 0

-T^TT-l-
0 C(N0 NQ Ni 0

(2.20)

R = 2

ßl 0 0

0 {l-ß)I + ßNT
1N0

TN0
lN1 0 (2.21)

0 0 (1-/5)/

Note that Q is symmetric, positive semi-definite and R is symmetric, positive definite.

Chapter 2. Fault Detection via the Detection Signal 33

Finally, letting» Sv be the set of L2 functions (x, a) satisfying the constraint? 5(2.15),

and defining

Jv(ß)= inf P{x,fi,ß)
(x,/j,)esv

(2.22)

we call on a useful result [30].

THEOREM 2.1. The function P has at least one saddle point (xs, /A/3") 977, 5„ X

[0,1] and

inf max P(x
{x,ß)€Sv 0<ß<l

,u,ß) — min max P(x, a, ß) =
^ ' (x,ß)esv o</3<i

max min P(x,u,ß) -
0</3<! (xtli)eSv

: P(X', /*',/?')■ (2.23)

Proof (from [30]) Let (x/,f/) be the solution of problem (2.22) . Then $(/}.?),

i = 0,1, depend continuously on 0 < ß < 1. Moreover, since

S0(fißo) = 0, if/3 = l, (2.24)

tSo(/io) is continuous for ß G (0,1], and since

Si(ja?) = 0, if 0 = 0, (2.25)

Si(fjbi) is continuous for ß G [0,1). Suppose

lim SAß?) >0.
/3->l

(2.26)

Then for some 0 < /5s < 1, we must have

(2.27)

Let (xs,u.s) = (xß3 ßßs). Then

P(x8,ß',ß)<Sl(ß\), V/?G[0,1], (2.28)

Chapter 2. Fault Detection via the Detection Signal 34

(holding at equality because ß cancels out) and

P(x,fi,ßs)>SM), V(x,n)eSv (2.29)

because (X
S
,/J,

S
) is the optimal solution of (2.22) for ß = ßs. This implies that

(xs,ns,ßs) is a saddle point and the rest follows. Now suppose that (2.26) does not

hold so that

lim«Si(/2f) = 0. (2.30)
/3->l

In that case S0 and <Si can be made arbitrarily small simultaneously. This implies

that Jv(ß) = 0 for all ß which means that there exists (xs,fis) such that (2.27) holds

with equality to zero. Then, clearly (2.28) holds because both sides of the inequality

are zero. In addition, (2.29) holds for all ßs G [0,1] because the right hand side of

the inequality is zero and the left hand side cannot be negative. This implies that

(xs, ßs, ßs) is a saddle point and the rest follows. □

Note that the above proof in [30] is done with knowledge of, and weight matrices

on the initial state, Zj(0). In that case, the bounded energy noise model becomes

Si{xi{0),tJLi)=xi(0)TFifixi(0) + [f 1/iiOOI2 dt < 1, i = 0,l. (2.31)
Jo

Since each Si is the sum of positive semi-definite terms, letting one term go to zero

does not alter the proof.

This result allows us to interchange the order of the inf and the max in (2.16),

and replace inf with min. Thus

Jv(ß)= min P(x,ß,ß) (2.32)
(x,fj,)esv

and, the characterization of not proper becomes

max JJß) < 1. (2.33)
0<^<l

Chapter 2. Fault Detection via the Detection Signal 35

Expanding this result to its fully explicit form, we see that a detection signal v is not

proper if and only if

1 /•*'

'o

where the min is subject to

1 ftf

max min - / xTQx + xT H ß + //'Rfj. dt < 1 (2.34)
0</3<l 2 J0

x' = Ax + Bv + Mfi. (2.35)

The inner minimization, the Jv(ß) problem, is a standard LQR optimal control prob-

lem with an added cross term in the objective function and the forcing function Bv

in the constraint. Jv(ß) is called the auxiliary cost function for the problem.

The auxiliary cost function exhibits several useful qualities [12].

LEMMA 2.2. For all v e L2, for 0 < ß < l, Jv(ß) is defined and has the following

properties:

1. It is zero for ß = 0 and ß = 1,

2. It is quadratic in v, i.e., for all scalar c, Jcv(ß) = \c\2Jv{ß)>

3. It is a continuous function of ß,

4- If v is not proper, then Jv(ß) < 1 for all 0 < ß < 1. Equivalently, Jv(ß) > 1

for some ß implies v is proper,

5. It is a strictly concave function of ß if the set of proper detection signals is not

empty, otherwise it is identically zero.

The proof is straightforward and relies on continuity and linearity. It can be found

in [12]. With this result, we can state the original problem of finding a minimum

energy proper detection signal v as

min ||?;|| subject to max Jv(ß) > 1. (2.36)

Chapter 2. Fault Detection via the Detection Signal 36

Note that the cases ß = 0 and ß = 1 are excluded because Jv(0) = Jv(l) = 0, and

Lemma 2.2 demonstrates continuity of Jv(ß) at these points.

Using the fact that Jv(ß) is quadratic in v, we arrive at the following fundamental

result

THEOREM 2.2. Let

r{ß) = sup f;^ = sup JM- (2-37)
vjiO J0

; \v\zdt \\v\\=l

Then

(7*)2 = max J*(ß) (2.38)
V ' 0</3<l

where 7* is £/ie separability index defined previously.

This theorem, while similar to results in [29] and [30], has added technical difficul-

ties due to the presence of the infinite dimensional space of the independent variable

and the unbounded finite dimensional subspace of the output sets. Despite these dif-

ferences, the proof is an extension of that in [29]. However, it is somewhat technical

and requires functional analysis and convergence theory for sequences. See [12] for

the complete proof.

Note that the ease of separating the nominal and fault models of a system is pro-

portional to the size of 7*. When 7* = 0, the models are indistinguishable regardless

of the detection signal.

As a final result before defining the optimization problems we will address, we

state a useful corollary to Lemma 2.2.

COROLLARY 2.1. A detection signal v is proper if and only if Jv(ß) > 1 for some

0< ß< 1.

Proof Lemma 2.2, part 4, shows that v is proper if Jv(ß) > 1 for some ß. To show

the converse suppose that Jv(ß) < 1 for all ß. For each ß, let {friß), Piiß)} be

Chapter 2. Fault Detection via the Detection Signal 37

where Jv(ß) attains its minimum. Clearly, the values producing a minimum at each

ß endpoint are pi = 0 for ß — 0, and //0 = 0 for ß = 1. Thus there will be a value ß

where ||/io(ß)|| = ||^i(/?)||. But then ||/ii(^)|| < 1, which shows that v is not proper.

D

2.1.3 Problem Statement

We can now state the two versions of the problem solved by the first half of the

algorithm. Version One, from (2.37-2.38) is:

(7*)2= max Jv{ß). (2.39)

IHI = i

0</3 < 1

Version Two, from (2.7) and (2.36) is:

(7*)-2= min / \v\2dt. (2.40)
Jo

Jv{ß) > 1

0 <ß < 1

These problems will be solved by first calculating the necessary conditions for a

minimum of the inner problem which defines Jv(ß), then numerically solving the

outer problem using the previously computed necessary conditions as constraints.

2.2 Necessary Conditions

As with many types of optimization problems, the Jv(ß) problem possesses conditions

that any extrema must satisfy in order to be an optimal solution. In Chapter 1 we

introduced the necessary conditions for an optimal solution to the standard LQR

problem. The Jv(ß) problem, while similar, is not the same problem as that discussed

Chapter 2. Fault Detection via the Detection Signal 38

in Chapter 1 because of the presence of the cross term in the integral, so in this section

we develop the necessary conditions for the Jv(ß) problem explicitly.

2.2.1 Computing the Necessary Conditions

Recall from (2.32) that

Jv(ß) = min \ / xTQx + xTE\i + fiTRfi dt (2.41a)
2 Jo

subject to

x' = Ax + Bv + Mix. (2.41b)

The Hamiltonian for system (2.41) is

H = -xTQx + \xTH^i + \pTRn + XT(Ax + Bv + M(i). (2.42)

As described in Chapter 1, the Euler equations for an extremum are

(2.43a)

(2.43b)

(2.43c)

m = x'

Hi = X'

Hi = 0.

These conditions applied to (2.42) give

x' = Ax + Bv + Mu, (2.44a)

A' = -QX-IHLI-A
T
\ (2.44b)

0 = Rfi + l-ETx + MTX. (2.44c)

which is an index one DAE in (x, X, (j) since R > 0.

While our algorithm will use (2.44) in their current form, it will be beneficial to

define these conditions in terms of a matrix Riccati equation as well. Riccati equations

Chapter 2. Fault Detection via the Detection Signal 39

stabilize relatively quickly, and are thus useful in theoretical developments involving-

long time intervals. The derivation also lends insight into boundary conditions for

(2.44). In addition, Riccati equations are used extensively in [30, 31].

2.2.2 Riccati Form of Necessary Conditions

To begin, note that the form of (2.41a) is a particular case of a more general problem

Z = min \x{tf)
TFx{ts) + i [' xTQx + xTHfi + /jTRß dt (2.45a)

2 2,7o

subject to

x' = Ax + Bv + Mfj, (2.45b)

where F = 251, (6 > 0 and small), is symmetric positive semi-definite. The Jv(ß)

problem is the case in which F — 0, but for the following derivation we leave the F

term in the cost. A nonzero F matrix is also used in Section 2.4.5. Fixing the initial

state, x(0) = f, and leaving x{tj) free, we minimize over all possible initial conditions

to obtain an expression for the optimal cost which will be useful in one form of our

algorithm.

Optimal Trajectory

Noting that extrema of (2.45) must also satisfy conditions (2.44) to be optimal, and

that R is symmetric positive definite for 0 < ß < 1, we solve for //, in (2.44c) and

substitute into (2.44a) and (2.44b) to obtain a system in (x, A)

A-\MR-lHT -MR-lMT (x\ B
i +

\HR~lHT - Q \HR-lMT - AT W 0

Chapter 2. Fault Detection via the Detection Signal 40

Letting

S = \MR~lHT

W = \HR~lHT (symmetric, > 0)

V = MR~lMT (symmetric, > 0)

we can simplify the system to

x A-S -V

W-Q ST-AT

x
+

B

0

a system of 2n linear time invariant differential equations, with the vector

(2.46)

B

0
acting as the forcing function. The system has the following boundary conditions

• At t = 0, n boundary conditions are provided by the initial conditions:

x(o) = e
• At t = tj, n boundary conditions are provided by the transversality con-

ditions:

X(tff
d

dx(tf)
l-x{tf)

TFx(tf)

Thus

X(tf) = Fx(tf). (2.47)

To determine the form of the relationship between x and A, let £l(t; 0) be the

2n x 2n fundamental solution matrix for (2.46). Then

r B

'o

x{t) -n(t-o) r(0)

Mt) ' Uo), ./o 0
v dr

Shifting this equation to the right end of the interval, we obtain

xm=mt)\{^)+l
tfn-^t)

,A(i/), A*).

B

0
v dr

Chapter 2. Fault Detection via the Detection Signal 41

Partitioning «(£/; t) into four n x n blocks

n(tf-t)
nu(tf;t) n]2(tf-t)

fi2i (</;<) fi22(«/;<)

leads to

z(i/) = fiHx(t) + n12A(t) + n / fi (T;t)Bvdr

x(tf) = n21x(t) + n22\{t)

(2.48a)

(2.48b)

~-i
where ft and ft are the parts of ft and ft L which conform to x(t). Combining

(2.47), (2.48a), and (2.48b)

^ rli £-i
ft21:r(i) + ft22A(i) = Fttux{i) + Ffti2A(£) + Fft / ft (r; £)Bwdr

leads to an expression for X(t)

+ [«22 (*/; <) - Fnl2{tf; t)}-1 FQ{tf; t) //' ft (r; *)ßu dr

provided the indicated inverse exists. Note that att — tf, we know that ft(£/; tj) = J,

i.e.,

Thusfi22(t/;t/;

so that

fin(i/;i/) = fi22(</;</)=/

fi12(t/;i/) = fi21(t/;t/) = 0

-Fnl2(tf;tf) = I is nonsingular. Also Fnu{tf; tf) - ft2i {tf, tf) = ^

A(i,) = IFx(tf) + IFIO = Fx{tf)

in agreement with (2.47). Kaiman, et al., [20] have shown that the inverse exists for

all t0 <t < tf, so (2.49) is valid.

Chapter 2. Fault Detection via the Detection Signal 42

The form of (2.49) leads us to believe that x(t) and X(t) are related by

\{t)=K(t)x(t)-g{t). (2.50)

From (2.46), we know that

x1 = {A-S)x-VX + Bv.

Combining this equation with (2.50) results in the expression of the optimal trajectory

x' = (A-S- VK)x + Vg + Bv. (2.51)

Riccati Equation

Differentiating (2.50), we obtain

A' = K'x + Kx' - g'. (2.52)

Substituting (2.51) into (2.52), we obtain

A' = [K1 + K(A -S)- KVK]x + KVg + KBv - g'. (2.53)

From (2.46), we also know that

\> = (W-Q)x + (ST-AT)\.

Combining this equation with (2.50) results in

A' = {(ST - AT)K + W - Q]x + (AT - ST)g. (2.54)

As long as an optimal solution exists, (2.53) and (2.54) must hold for all x and t.

Equating coefficients yields

K' = (ST - AT)K + K{S -A)+ KVK + W-Q (2.55)

Chapter 2. Fault Detection via the Detection Signal 43

and

9' = (ST - AT + KV)g + KBv. (2.56)

The boundary conditions for these equations are obtained at t = tj as follows:

• From (2.50), X(tf) = K(tf)x{tf) - g{tf),

• From (2.47), \(tf) = Fx(tf).

Both of these must hold for all x{tj), so

K(tf) = F [in agreement with the note below (2.49)]

g(tf) = 0.

With the boundary conditions completely specified at t, = /./, (2.55) and (2.56)

can be solved to obtain K(i) and g(t) uniquely for all t <E [0, tf\. Furthermore, if K(t)

is the solution of (2.55), and K(tj) = F, then K(t) is symmetric for all t G [0,tf],

because

(K'f = [(ST - AT)K + K(S -A) + KVK + W-Q] T

and thus

(KT)' = KT(S -A) + (ST - AT)KT + KTVKT + W-Q

since W and Q are symmetric, which means that K and KT are solutions of the same

Riccati equation. This fact, combined with the boundary condition K{tj) — F =

K(tf)T, and the uniqueness property of ODE solutions, implies that K = KT.

In fact, K is also positive definite and bounded for all t e [0, i/]. To see these

facts, we must first show W - Q to be negative definite. Recall the construction of

the M matrix

-l-

M =
M0 M0N0 Nx 0

0 Mi Mi

Chapter 2. Fault Detection via the Detection Signal 44

where

Mi = Mi Mi , Ni = Ni 0

We have assumed that each Mi is full row rank, and that the coordinate change

is done such that Ni is invertible. This implies that M is full row rank, and thus

V = MR~lMT is symmetric positive definite, since R is symmetric positive definite.

Letting C - N~lCQ -N'd , we can rewrite Q and H as

Q = 2ßCTC

H = -AßCTN0
1

0 Ni 0

Thus

W = \HR-1HT

= Hl6ß2)C<N0
-l

0 JVi 0 R -l 0 iVi 0

2ß2CrN0
1N1 (l-ß)I + ßN1

1N0
1N0 ^

-1-1

1 T NJC
 T T
N\N,TC.

-1-IT Performing a singular value decomposition on iV0 Ni, we obtain

NQ
lNi = UEV = U

ax 0 0

o ••• 0

0 0 om

V

where, since (iV0 Ni)~l exists, all o-j are bounded away from zero. Then

W = 2ß2CTUZV

= 2ß2CTÜE

{l-ß)I + ß{UZV)T(UZV) (UEVfC

= 2CTU

(l-/5)/ + /3E2

0

-1

-1

EUTC

{l-ß)+ßaj

0

0

0

ß2"'m
(l-ß)+ßal

UTC

Chapter 2. Fault Detection via the Detection Signal 45

and

Q = 2ßCl C = 2ßC UU1 C

Subtracting, we obtain

W-Q = 2CTU

2CTU

_£fl
(\-ß)+ßv?

ß2°2i
(i-/3)+^;2

UTC - 2CTUßIÜTC

ß UTC.

At ß = 1, {lIß£ßa2 ~ ß = 0, and at ß = 0, {l_%%a2 - ß = 0. This expression is

quadratic in ß, and so it can have at most two distinct roots. Thus, for values of ß

between 0 and 1, it will either be positive, or negative (or identically zero, which it

is not), but not a combination of both. Evaluation at the midpoint of the interval

shows that the expression is always negative. This fact implies that W - Q is negative

definite.

Now in solving the Riccati equation (2.55) in backward time

K' = {ST - AT)K + K(S -A) + KVK + W-Q

at t = tf, we know that K(tf) = F = 281, where S is nonnegative and small. Thus

K'(tf) = (small) + (smalt) + (smalt)2 + (negative definite) — (negative definite)

and thus

K(tf - At) > 0.

If 5 = 0, the same result holds. Thus we see that if F is symmetric positive semi-

definite, then K(t) is symmetric positive definite &tt = tf- At. Either K(t) remains

Chapter 2. Fault Detection via the Detection Signal 46

positive definite in backward time or it does not. If it remains positive definite, then

at those times, r, when it begins to lose definiteness, xTK(r—At)x > 0 for all nonzero

vectors x- If K(t) does not remain positive definite, then at those times, r, when

K(T) loses definiteness there must exist a nonzero vector x, for which K(T)X = 0. If

this is true,

XTK'(r)X = X
T(ST - AT)K(r)x + XTK(r)(S - A)X +

XTK(r)VK(r)X + XT(W-Q)x

= 0 + 0 + 0 + (negative definite).

That is, X
T
K\T)X < 0, which implies that X

T
K(T - At)x > 0, and K(r - At)

becomes positive definite again. Since this true for any vector that causes loss of

positive definiteness as well as those vectors that do not, it is true for all vectors.

Thus K(t) remains positive definite.

Furthermore, at t = r + At, for any nonzero vector x, for which K(r)x — 0,

X
T
K\T + At)x = (small) + (small) + (small)2 + (negative definite)

which implies xTK'(r+At)x < 0. By the same argument then, K(T) cannot continue

to lose definiteness, and is therefore bounded below, away from zero.

To see that K is bounded above, multiply (2.55) by K"1 on both sides.

K-^K'K'1 = K~l(ST - AT) + (S- A)K~l + V + K~1(W- Q)K~\

Since (K-1)' = -K^K'K'1

(K-1)' = K~l(AT - ST) + (A- S)^1 + K'l(Q - W)K~l + (-V)

which, since Q - W > 0 and (-V) < 0, is the same Riccati equation as (2.55), with

K~l as the solution. So, by the same argument as that above for K(t), K(t)_1 is

bounded away from zero. This fact implies that K(t) is bounded above as well. Thus,

Chapter 2. Fault Detection via the Detection Signal 47

if F is symmetric positive semi-definite, then K(t) is the symmetric positive definite

solution to a matrix Riccati equation, bounded above for all t 6 [0,t/).

Optimal Cost

Returning to the cost function, suppose the optimal cost-to-go at time t has the form

Z*(ß, t) = \x{t)TK{t)x(t) - g(t)Tx{t) + tp(t). (2.57)

To obtain an expression for ip(t), define the Hamilton-Jacobi equation for the system

as

£tZ*{ß,t) + mirv [\xTQx + \xrEii + l/jTRfi

+(Ax)TfxZ*(ß,t) + (Bv)TfxZ*(ß,t) + (Mfi)T£Z*(ß,t)} = 0.

Letting X(t) = ^Z*(ß,t) be the Lagrange multiplier as before, the \\, that mini-

mizes the expression in brackets is given by (2.44c). Substituting for /i in (2.58) and

expanding, we obtain

<*Z* + -xT(Q - W)x + xT(AT -ST)\- hTVX + vTBX = 0 (2.59)
at 2 2

where S, W, and V are as before. Now, if (2.57) is correct, then

1

Thus

and

Z* = -xTKx - gTx + (p.
Li

l-Z* = -xTK'x - g,Tx + if'
dt 2

Z* = X = Kx - g.
ox

Chapter 2. Fault Detection via the Detection Signal 48

Substituting these into (2.59), then expanding and combining like terms we obtain

\xT [K' + Q-W + (AT- ST)K + K{A - S) - KVK] x

+xT [-g' + {ST -AT + KV)g + KBv] (2.60)

+y'-\gTVg-vTBTg = 0.

For (2.60) to hold for all x and t, (2.55) and (2.56) must hold, and

^ = \gTVg + vTBTg (2.61)

must also hold. Boundary conditions for ip, obtained from (2.57) at t = tf, are

Z*(ß,tf) = l-x{ts)
TK(tj)x{t}) - g(tf)Tx(tf) + <p{tf).

Since K(tj) = F, and g(tf) — 0, this expression reduces to the terminal cost,

lx(tJ)TFx{tf),li<p{tI) = 0.

To obtain an expression for the total optimal cost, first note that the total cost

for the fixed initial condition problem is

The solution for the free initial state problem is obtained by letting f vary, and

minimizing Z* over the initial states. We find the necessary condition for a minimum

is

^Z* = fK(0) - g(0)T = 0.

Note that from (2.50)

A(0f = x(0)TK(0) - g(0)T = £rK(0) - g(0)T.

Thus the optimal Z* for the free-endpoint problem occurs when A(0) = 0

z*(ß) = ieKm-g(Qn+<p(u)
= [eK(o)-g(om-ieKm+<p(o)
= <p(0) - \x{0)TK(0)x(0)

Chapter 2. Fault Detection via the Detection Signal 49

and since

A(0) = K{0)x{0) - </(0) = 0 (2.62)

then K(0)x(0) — g(0), and we obtain the expression for the optimal cost

Z*(ß) = ^0)-1-x(0)Tg(0). (2.63)

Summary

The necessary conditions for an optimal solution to the Z problem, (2.45), can be

represented in terms of a stable matrix Riccati differential equation and two linear

vector differential equations. The above derivation is completely consistent with the

case F = 0. Thus, the Jv(ß) problem can be characterized in terms of these derived

quantities. In the next section, we will formulate the max min problem in terms of

the two forms of the necessary conditions derived above.

2.2.3 Problem Formulation in Terms of the Necessary Con-

ditions

The previous discussion can be summarized by expressing (2.39) and (2.40) as bound-

ary value problems (BVPs) in terms of the two forms of the necessary conditions: the

raw form, (2.44), and the Riccati form, (2.55), (2.56), (2.51), (2.61), and (2.62).

Using the raw form of the necessary conditions, Version One, (2.39), becomes

(7*)2 = maxZ(t/) (2.64a)
v,ß

Chapter 2. Fault Detection via the Detection Signal 50

subject to the constraints

x' = Ax + Bv + Mfi (2.64b)

A' = -Qx - \HH - ATX, A(0) = \{tf) = 0 (2.64c)

6' = vTv, 0(0)-0, 6{tf) = l (2.64d)

Z' = l[xTQx + xTHß + ßTRfi\, Z{0) = 0 (2.64e)
Al

0 = Rix+l-HTx + MT\ (2.64f)
A

0 < j9 < 1. (2.64g)

Equations (2.64) are an index one BVP in (X,X,6,Z,/J,) since Ä > 0. Version Two,

(2.40), becomes

**/

'o

subject to the constraints

(7*)~2 = min / \\v\\2dt (2.65a)
^ Jo

x' = Ax + Bv + Mß (2.65b)

A' = -Qx-\Hn-AT\ A(0) = A(t/) = 0 (2.65c)

Z' = i[:rrQz + zr#/j+ //#//], Z(0) = 0, Z(*,)>1 (2.65d)
A

0 = i^+itfTz + MTA (2.65e)
A

0 < /? < 1. (2.65f)

Using the Riccati form of the necessary conditions, Version One, (2.39), becomes

1
(7*) = max V(0) - §z(0)rs(0) (2.66a)

Chapter 2. Fault Detection via the Detection Signal 51

subject to the constraints

K

9

x

<P'

e

o =

(ST - AT)K + K{S -A) + KVK + W-Q, K{tf) = 0

{ST -AT + KV)g + KBv, g(tf) = 0

(A-S- VK)x + Vg + Bv

\gTVg + gTBv, <p(tf) = 0

V
T

V) e(0) = 0, 6{tj) = 1

A-(0)a;(0) - g{0)

0<ß < 1.

(2.66b)

(2.66c)

(2.66d)

(2.66e)

(2.66f)

(2.66g)

(2.66h)

Version Two, (2.40), becomes

(7
*\-2 mm / llull dt

«.0 Jo

subject to the constraints

(2.67a)

K' = {ST - AT)K + K(S -A) + KVK + W-Q, K{tf) = 0 (2.67b)

g> = (ST-AT + KV)g + KBv, g{tf) = 0

x' = (A-S-VK)x + Vg + Bv

<p' = \gTVg + gTBv, <p(tf) = 0

0 = K(0)x(0)-g(0)

1 < <p(P)-\x(0)Tg(0)

0<ß< 1.

(2.67c)

(2.67d)

(2.67e)

(2.67f)

(2.67g)

(2.67h)

Equations (2.64e) and (2.65d) define Jv(ß) explicitly, while (2.67g) and the right hand

side of (2.66a) define it in terms of (2.63). Equations (2.65d) and (2.67g) also reflect

the requirement for v to be proper, Jv(ß) > 1. Note that both formulations of Version

One, (2.64) and (2.66), require the detection signal to be normalized. Thus, for these

Chapter 2. Fault Detection via the Detection Signal 52

problems, the minimum energy proper detection signal must be rescaled by ^. No

rescaling is necessary for the formulations of Version Two, (2.65) and (2.67).

2.2.4 Sufficient Conditions

The arguments of the two previous sections relied on the assumption that the nec-

essary conditions guaranteed a minimum. Sufficient conditions for a local minimum

are in fact included in the necessary conditions as well. To see this fact, recall that

the Hamiltonian for our problem is

•~ 1 1 1
H = -xTQx + -xTE\i + -\?R\x + XT{Ax + Bv + Mix).

Zi L> £>

It is a well known fact (Athans and Falb [1], for example), that if the matrix

d2H d2H
dx2 dx ö/i

d2H d2H

(2.68)

(2.69)

dji dx dp.2

is positive semi-definite, then the noise, //, which satisfies

Hß = 0 (2.70)

(one of the Euler equations) is at least locally optimal. From (2.68), we find that

= Q

dH
dx

82H
dx2

dH

d/j,

82H
<V

d2H = 1H

dx du 2

d2H = lRT

d\i dx 2

Qx + -HfM + ATX
ZJ

1
R\i + i-HTx + MTX

Li

R

(2.71a)

(2.71b)

(2.71c)

(2.71d)

(2.71e)

(2.71f)

Chapter 2. Fault Detection via the Detection Signal 53

Substituting (2.71) into (2.69), we obtain

Q \H

\H? R

which is equivalent to GTG, a symmetric positive semi-definite matrix, where

(2.72)

G

^ßNö'Co -y/ZpNö'Ci

0 0

0 0

0 0

0 0

0

0

Tßl

/2ßN~1N1

0

0

0

0

0

0 0 y/2(l-ß)I

o o ^2(1 - ß)1

(2.73)

Thus (2.72) is positive semi-definite. Since the higher derivatives of H are zero, the

noise, //, obtained from (2.70) and (2.71c) minimizes, at least locally, the cost, [1].

2.3 The Minimum Energy Detection Signal Algo-

rithm

It is useful at this point to put the detection signal problem in algorithm form.

The algorithm described below is suitable for solving in Boeing's Sparse Optimal

Control Software (SOCS) [3, 4]. The SOCS package is a collection of FORTRAN

77 subroutines capable of solving a great variety of optimal control problems. The

package can handle many types of constraints, including L2 and algebraic constraints,

which are the types of constraints generated by the problems considered in this thesis.

The main drawback of the software is that it is written in FORTRAN 77, which has

limited matrix capability, and therefore requires translation of all system parameters

into indexed variable form. This can be overcome by the use of additional software

which can automatically generate FORTRAN code from matrix formatted input. In

Chapter 2. Fault Detection via the Detection Signal 54

Appendix A, we describe routines in MATLAB, by The MathWorks, Inc. [26] and

MAPLE, by Waterloo Maple, Inc. [18] which can be used to accomplish the required

translation, as well as a sample SOCS driver file.

The algorithm requires the system model to be in the form previously described

x'i = AiXi + BiV + Mifii (2.74a)

y = dxi + Niin (2.74b)

for i = 0 and 1, where Xi, y, v, and \ii are the system states, output, detection signal,

and noise, respectively. The matrices Ai, Bi, Q, Mi, and JVj must be matrices of

appropriate dimensions, with M; and Ni having full row rank. In addition, [Ai Cj]

must be observable.

The minimum energy detection signal (MEDS) algorithm (with appropriate soft-

ware in parentheses):

1. Perform QR decomposition on N? (MATLAB)

Nf = QiR, (2.75)

where the Qi are unitary matrices. Thus

N> = RJQJ (2.76)

2. Perform constant orthogonal coordinate changes on /i; (MATLAB)

(a) Let Rj = [Ni 0], where Ni is invertible

(b) Let Qf fa = ' I with the same partitioning as Rj. Thus

vv

NiPi = [NiO]rj\ (2.77)

Chapter 2. Fault Detection via the Detection Signal 55

(c) Let MiQi — [Mt Mi] with the same partitioning as R{ . Thus

MifM = MiQfCgm = [Mi Mi]
Hi

Mi

(2.78)

Note the system model, (2.74), becomes

x'i = AiXi + BiV + MiJli + Mißi

y = dxi + Nifii

(2.79a)

(2.79b)

3. Reduce model dimension by eliminating y and /i0 (MATLAB)

(a) Combine both equations (2.79b) for y, solve for JJ,0, and substitute into

(2.79a), i = 0

x'0 = {A0 - MONQ'C^XO + MoÄT^dzi + B0v + M0ßo + Mo^NiTh

(2.80)

(b) Let

x
x0

,xi

A =
Ao-MoN-'Co MQN~lC}

0 Ai
B =

Bo

Bl

M =

7-1-
M0 M0N0 N! 0

0 Mi Mi
, V Pi

Note the system model, (2.79), is now

x' = Ax + Bv + M\i (2.81)

4. Compute new system matrices (MATLAB)

Chapter 2. Fault Detection via the Detection Signal 56

(a) Let C = [N0
1CQ - N0

ld] and N = N0\o Nx 0], with the columns of

N conforming to \x

(b) Let H = -AßCTN and Q = 2ßCTC

(c) Let

R = 2

ßl 0 0

0 (l-ß)I + ßNT
1N0

TN-1N1 0

(1 - ß)I 0 0

with its rows and columns conforming to \i

(d) Compute A, B, M, H, Q, and R

(e) For Riccati version, compute S = iMR^H7, W = ±HR-lHT, and V =

MR-XMT

5. Perform constrained optimization (SOCS)

(a) Version One, solve

{i*)2 = mtpZ{tf) (2.82a)

subject to the constraints

x

A'

6'

Z'

0

Ax + Bv + M/J,

-Qx - \EIX - AT\, A(0) = X(tf) = 0

V V , 0(0) = 0, 9(tf) = l

- [xTQx + xTE[i + fiTRu] , Z(0) = 0

RH + \HT
X + MTX

0.01 < ß < 0.99

(2.82b)

(2.82c)

(2.82d)

(2.82e)

(2.82f)

(2.82g)

Chapter 2. Fault Detection via the Detection Signal 57

(b) Version Two, solve

•tj

(7T
2 = min/ |

v>ß Jo
vfdt (2.83a)

to the constraints

x' = Ax + Bv + M\i (2.83b)

X' = -QX - l-En, - AT\ A(0) : = \{tj) = 0 (2.83c)

Z' = - [xTQx + X
T

HIL + ixTR,u] Z(0) = 0, Z(tf) > 1 (2.83d)

0 = RIX+\H
T

X + M
T
\ (2.83e)

0.01 < ß < 0.99 (2.83f)

(c) Version One, the Riccati form, solve

(7*) = max
1

v(o) - ^(o)Tg(o)

subject to the constraints

(2.84a)

K

9

x1

V'

&

(ST - AT)K + K{S -A) + KVK + W-Q (2.84b)

= (ST -AT + KV)g + KBv, g(tf) = 0, K(tf) = 0 (2.84c)

= (A-S-VK)x + Vg + Bv

= \gTVg + gTBv, ip(tf) = 0

= vTv, 6{0) = 0, 6(tf) = 1

0 = K(0)x(0)-g(0)

0.01 <ß <0.99

(2.84d)

(2.84c)

(2.84f)

(2.84g)

(2.84h)

(d) Version Two, the Riccati form, solve

(7*)
*\-2

h
mm / ||i>| dt
v,ß Jo

(2.85a)

Chapter 2. Fault Detection via the Detection Signal 58

subject to the constraints

K' = {ST-AT)K + K(S-A)+KVK + W-Q (2.85b)

9' = (ST-AT + KV)g + KBv, g(tf) = 0, K{tf) = 0 (2.85c)

x' = {A-S-VK)x + Vg + Bv (2.85d)

¥>' = \gTVg + gTBv, <p{tf) = 0 (2.85e)

0 - K(0)x(0) - 0(0) (2.85f)

1 < ¥>(0) - ^(0)r$(0) (2.85g)

0.01 < ß < 0.99 (2.85h)

For each formulation, v and // are treated as control variables while ß is passed to

SOCS as a parameter. The constraint (2.85h) and the others identical to it are

required to bound ß away from 0 and 1 early in the optimization process. The

minimum energy proper detection signal, v, is -^ for (2.82) and (2.84). The minimum

energy proper detection signal, v, is simply v for (2.83) and (2.85).

2.4 Variations

The assumptions and problem formulations described above limit the types of prob-

lems that may be solved by the MEDS algorithm. This fact leads to questions about

extending the algorithm to variations of the problem: Can the algorithm handle prob-

lems with more than one fault model? What if the problem must be formulated more

in terms of the original system matrices? What happens when a control is already

present in the model? Could alternative cost functions be minimized? Does knowl-

edge of initial conditions impact the theory? This section will address these questions

and demonstrate the flexibility of the algorithm.

It should be noted that while this section uses Equations (2.65) as the form of the

Chapter 2. Fault Detection via the Detection Signal 59

model around which we describe variations, any of the four forms could be used. It is

not our intent to promote one form of the algorithm over another, merely to present

the options available.

2.4.1 Multiple Fault Models

Many, if not most, real world systems which are represented as multi-model control

systems have more than one fault model. Unfortunately, this is one of the types of

problems that approaches such as [30] are unable to efficiently address. However,

our MEDS algorithm can solve the problem in one of two ways. For this discussion,

assume that three models exist for the system: the nominal model, (i — 0), and two

fault models, (i = 1,2). Obviously, problems with more than two fault models may

be solved with either method using combinatorial extensions.

The first method applies the MEDS algorithm in a sequential manner, an ineffi-

cient approach which [30] is forced to take. Dividing the test period, [0, tj], into three

subperiods, [0,^], [^, ^], and [^-,tf], use the algorithm to solve model 0 versus

model 1 in the first subperiod for v0i, model 0 versus model 2 in the second subperiod

for t>02) and model 1 versus model 2 in the final subperiod for t>12. Because a detection

signal which is proper on an interval is still proper on any longer interval including

the original interval (due to the fact that an L2 noise on the test period has the same

or smaller norm on a shorter subperiod), the composite v obtained by applying t>0i on

[0, ^], then v02 on [^, ^], and then vn on [-^-,tf], will be a proper detection signal.

It will also be the minimum energy proper detection signal for the problem via this

approach.

Since this method involves shorter test periods for the individual comparisons, it

has a tendency to produce detection signals of higher than necessary energy. The

second method avoids this tendency by simultaneously solving all three subproblems

Chapter 2. Fault Detection via the Detection Signal 60

independently over the entire test period for a common v, an approach of which many

prior methods, including [30], are incapable. Consider

(7T
2= min ftf\\v\\2dt (2.86a)

V,P01,PQ2,P12 J0

subject to the constraints

x 01 = A0ixQl + B01v + M0im (2.86b)

A'oi = -QQIXQI - -tfoiMoi - ^oiAoi, Aoi(0) = A0i(i/) = 0 (2.86c)

zk = 2 KiQoizoi + »oi^oi/ioi + l4iRoim] , Z01 (0) = 0, Z0i(tf) > 1 (2.86d)

0 = Roim + 2^01^01 + M^Xoi (2.86e)

0.01 < A,i < 0.99 (2.86f)

x'02 = ^02^02 + #02^ + M02/i02 (2-86g)

A02 = -Q02Z02 - 2-^02^02 - A%2\02, A02(0) = A02(*/) = 0 (2.86h)

^02 = 2 [2;02(3022;02 + XQ2H02ß02 + ^02^02^02] , ^02(0) = 0, Z02(i/) > 1 (2.86i)

0 = Ä02M2 + 2^02^02 + M0
r

2Ao2 (2.86j)

0.01 < ,002 < 0.99 (2.86k)

x'l2 = Al2xl2 + B12v + M12M12 (2-861)

A'12 = -Ql2x12 - ^H12m - Aj2Xl2, A12(0) = A12(i/)=0 (2.86m)

Z'n = \ [xl2Qx2Xx2 + xf2H12^l2 + tf2Ri2Vi2\ , Zl2(0) = 0, Z12(tf) > 1 (2.86n)

0 = Ä12M12 + 2^2^12 + A*£Ai2 (2.86O)

0.01 < /812 < 0.99 (2.86p)

where a vector^ or a matrix^- is the unsubscripted vector/matrix in the simple model

(2.65) when model i and model j are the two models for which the problem is being

formulated. Note that only the detection signal is common between models. This

independence increases the size of the problem with both the size and number of

models.

Chapter 2. Fault Detection via the Detection Signal 61

It should also be noted that if the goal is to detect a fault, but it is not important

to distinguish between fault models, the detection signal should be minimized by

solving only those pairwise problems including the nominal model (i.e., in the three

model case, model 0 versus model 1, and model 0 versus model 2). The nominal

model will then be distinguishable from the fault models, but individual fault model

outputs may overlap each other. These cases will be discussed further in the next

chapter. Examples of multiple fault model problems are included in Chapter 4.

2.4.2 Unreduced Model

In addition to multiple fault models, many system models have parameters which

represent some kind of physical quantity. Model reduction hinders the ability to

match parameters with real quantities, and so it may be useful in these cases to

formulate the problem more in terms of original system equations. Consider the

characterization of not proper, (2.10), after applying the result, (2.23)

•*/
x min /

°</3<l Jo

with the minimum subject to

max min/ ß\u.0(t)\
2 + (1 - ß)\/M{t)\2 dt < 1 (2.87a)

x'Q = AQXQ + B0v + M0/io

x\ = Axxi + Biv + Mi/ii

0 = CO-TQ - CiXi + Noßo - Nifii.

Instead of reducing (2.87) as before, let

x = V

A0 0

0 Ax

> vß Vß = 2
ßl 0

0 (l-ß)I

, B =
B0

B,
M =

MQ 0

0 Mi

(2.87b)

(2.87c)

(2.87d)

Chapter 2. Fault Detection via the Detection Signal 62

C = [C0 -d], N=[N0 -N,}.

Then the characterization of not proper, (2.87) becomes

1 f'f
ix mm

0</3

with the minimum subject to

1 ftf

max min - / uTVßu dt < 1 (2.88a)
)</3<i 2i0

x' = Ax + Bv + Mfi (2.88b)

0 = Cx + Nii. (2.88c)

The Hamiltonian for the inner problem is

H = \vTVßii + \l{-x' + Ax + Bv + My) + Xj(Cx + Nfi). (2.89)

Applying the necessary conditions, (2.43), to (2.89), we obtain

0 = VßfL + MTXQ + NTXl (2.90)

A^ = -^Ao-C^Ai (2.91)

as well as (2.88b)-(2.88c). Thus we obtain an unreduced problem that can be ex-

pressed in the same form as the reduced problem. In terms similar to (2.65)

(7*)~2 = min [' \\vfdt (2.92a)
v>ß Jo

subject to the constraints

x' = Ax + Bv + Mn (2.92b)

0 = Cx + NfjL (2.92c)

A'0 = -ATX0-CTX1, A„(0) = X0(tf) = 0 (2.92d)

Z' = \l?Vßli, Z(0) = 0, Z{tf)>l (2.92e)

0 = Vßn + MTX0 + NTXl (2.92f)

0 < ß < 1. (2.92g)

Chapter 2. Fault Detection via the Detection Signal 63

For this formulation to be worthwhile, the benefit obtained from association of

model parameters with quantities of interest should outweigh the impact of the in-

creased dimension of the problem. In addition, (2.92b) and (2.92c) comprise an index

one BVP, so optimization software used to solve it must have the capability to handle

DAEs.

2.4.3 Controlled Systems

Even in cases for which a reduced model is acceptable, the presence of a known ref-

erence control, u, may appear to complicate matters. In actuality, controlled systems

can easily be handled by the algorithm. By using the same input channels for the

detection signal, v, and the control, u, the problem goes from

minlMI subject to max JJ/5) > 1 (2.93)
11 " J o</3<i KH' ~

to

min llüll subject to max Ju+V(ß) > 1. (2.94)
" 0</3<l

Thus instead of v appearing in the constraints, u + v would appear. Note that in this

case, it is possible that a zero detection signal may be the minimum proper. This

would occur when the control by itself is already proper.

If the reference control does not come in on the same channels as the detection

signal the differential equation becomes

x'i = A{Xi + Btv + EiU + Mim. (2.95)

By letting w = [wi,W2] = [v,u], we can construct a problem similar to (2.94)

min H^ill subject to max Jw(ß) > 1 and w2 = u. (2.96)

Chapter 2. Fault Detection via the Detection Signal 64

An alternative approach to solving the controlled system is to eliminate u just

as we eliminate the output, y, to obtain (2.13). Using the expression for the known

control, model reduction is accomplished as described in Section 2.1.2.

2.4.4 Alternative Cost Functions

Another complication occurs when the energy of the detection signal is not the desired

cost function. One possible alternative cost function is the power of the detection

signal, with noise of bounded power. For this case, the noise model, (2.3), becomes

||^||2= [tf \^(t)\2 dt < Ktf, i = 0,l,K>0. (2.97)
Jo

By retracing the problem development in the first part of this chaper, we see that the

only differences between the bounded power noise/minimum power detection signal

case and the bounded energy noise/minimum energy detection signal case are the

values of the right hand sides of the inequalities (2.3) and (2.97), and the scaling

of the objective function. Thus, for the bounded power/minimum power detection

signal problem, (2.65) becomes

mm-^ [f \\v\\2dt (2.98a)
v,ß Ktf J0

subject to the constraints

x' = Ax + Bv + Mfi (2.98b)

A' = -QX-\H^-A
T

X, A(0) = A(t/) = 0 (2.98c)

Z' = l[xTQx + xTHfi + fjTRij], Z(0)=0, Z{tf)>Ktf (2.98d)

0 = Rfi+lHTx + MTX (2.98e)

0 < ß < 1. (2.98f)

Other alternative problems that introduce complications no more difficult than

those above include

Chapter 2. Fault Detection via the Detection Signal 65

• bounded power noise/minimum energy detection signal,

• bounded power noise/minimum of a function of the detection signal (Qx +

Rv),

• bounded energy noise/minimum of a function of the detection signal (Qx+

Rv).

Each of the problems in this list is easily constructed and efficiently handled by SOCS.

2.4.5 Knowledge of Initial Conditions

As a final variation on the problem, consider the case in which a weighted initial

condition is added to the noise constraint. In this case, instead of the bounded

energy noise model, (2.3), we have

Si{xi(0),fjLi) = XiiOfPrfxiiO) + / \fXi{t)\2dt < 1, i = 0,1 (2.99)
Jo

where the rr^(0) are the initial states and the P^1 are the weight matrices. This can

also be generalized to

Sai!i(xi{0),Lii) = [xi{0) - cufPrJlxiQ) - a*] + / \m{t)\2dt < 1, i = 0,1 (2.100)
Jo

for some fixed vector ai. (2.99) is the case addressed in [30], and this formulation leads

to quite a different method. The approach is made possible by the elimination of the

long axis in each output set caused by the free initial condition. Nikoukhah, et al. [30]

use standard Kaiman filtering combined with extensive Riccati differential equation

theory to derive an elegant method for computing the minimum energy detection

signal and the separability index. One chooses a 7, then solves a Riccati equation

until it diverges. If the divergence occurs inside the test period, increase 7 and repeat.

If the Riccati equation diverges past the end of the test period, decrease 7 and repeat.

Using a bisection method, 7* can be found with any desired accuracy. Once 7* is

fixed, the minimum energy detection signal is computed by solving a two-point BVP

Chapter 2. Fault Detection via the Detection Signal 66

via two other Riccati equations. Thus, whereas our approach is direct, relying on the

basics of optimal control theory, the approach of [30] is recursive in nature, relying

on the stability of Riccati matrices. Unfortunately, the approach of [30] is limited to

linear systems of only two models.

Our approach, however is not only extendable to certain nonlinear systems we

discuss in Chapter 5, it can handle systems of more than two models as previously

mentioned, and it can handle the noise models (2.99) and (2.100). In fact, the theory

for those noise models is actually slightly simpler due to the elimination of the long

axis in the output sets. P(x,jj,,ß) from (2.18) becomes

P(x,fi,ß) = ßx0(0)TP0-0
lx0(0) + (1 - ß)x1(Ö)TPrix1(0) +

- I ' xTQx + xTE\i + nTRfi dt (2.101)
2 Jo

but the new term is positive as long as Pifi > 0. Thus, Jv(ß) = minP(x,(i,ß) > 1

still characterizes a proper detection signal. While the boundary conditions change

slightly, the new term involving the initial conditions does not appear in the varia-

tional equations. Thus the problem is virtually the same, and we expect the impact of

the weight matrices to diminish as the test period increases in length. SOCS should

encounter no difficulties from this variation.

2.4.6 Conclusion

While other variations of the basic problem exist which may be more difficult to

accomodate, it is clear from the cases discussed in this section that the algorithm

is quite flexible and can be adapted to solve many types of multi-model problems.

In fact, current theory for the multiple fault model case only provides for problem

development; it does not provide a practical means with which to solve the problem.

Our MEDS algorithm not only provides theoretical development for the multiple fault

Chapter 2. Fault Detection via the Detection Signal 67

model case, it also supplies a simple method for solving such problems.

Chapter 3

Model Identification via the Separating

Hyperplane

3.1 The Problem - Determining the Origin of a

Given Output

As was shown in the previous chapter, the MEDS algorithm guarantees that the

output sets, Al{v), from the two possible system models are disjoint. In other words,

given an output from the system, it is the result of one model or the other, but

not both. The algorithm does not, however, tell us from which model the output

is derived. In this chapter, we will address the model identification step, and by

specifying the correct model for a given output using a separating hyperplane, we

will complete the development of our multi-model approach to fault detection and

model identification in linear descriptor systems.

68

Chapter 3. Model Identification via the Separating Hyperplane 69

3.1.1 Problem Setup

Recall that the true model of the system is one of two models

x\ = AiXi + BiV + MM (3.1a)

j/i = dxi + Nifii (3.1b)

for i = 0 and 1, where all variables are as previously defined except v, which is now

the minimum energy detection signal from the MEDS algorithm. In addition, with

the application of v, each model has a distinct output, and so the output, y, is now

subscripted.

Recall also from Section 2.1.1, that the output sets, Al(v), are open convex sets.

The sets are open because ||/i2|| < 1 and the Ni are full row rank. In effect, the

noise contribution to an output set can be likened to the addition of an open "ball"

(in the L2 sense) to the boundaries of the noiseless output sets. The fact that the

minimum energy detection signal is being applied implies that while the output sets

are disjoint, their closures share at least one common point at any given time. This

occurs due to the definition of minimum proper. Suppose a detection signal which

is infinitesimally "smaller" than the minimum energy detection signal is applied. In

this case, the detection signal would not be proper, and the output sets would not

be disjoint. In order for the open output sets to intersect with the application of the

infinitesimally smaller detection signal, the closures of the output sets must intersect

with the application of the minimum energy proper detection signal.

Assuming a unique point of intersection of the closures of the output sets, which

occurs when at least one of the sets is strictly convex, that point is easily computed.

Recall from the previous chapter that the output equations were combined in order

Chapter 3. Model Identißcation via the Separating Hyperplane 70

to reduce the dimension of the model. That is

y = Coxo + N0ß0 (3.2a)

y = ClXl + Nm (3.2b)

were equated to each other to eliminate y. When the optimal trajectory, xi, and

the "optimal" noise, fa, (from the optimal solution to the MEDS algorithm) are

substituted into equation (3.2b), the resulting y is the point of intersection of the

closures of the Al{v). This is true because the MEDS algorithm actually makes use

of the complements of the output sets in the optimization, finding the detection signal

of smallest norm that does not satisfy the not proper conditions, as discussed in the

previous chapter. The complements of the output sets are closed sets in L2, and the

y that results from inserting the solution of the MEDS algorithm into (3.2) is on the

shared boundary of these sets. Note that we could use either equation of (3.2) to

compute y, but in the model reduction, part of (i0 is eliminated; all of Hi is available

from the optimal solution. For the remainder of this discussion, let the common y be

called y.

Problems may result when the closures of the output sets intersect at more than

one point at any given time. Non-unique intersections among convex sets can only

occur when the sets have flat, parallel sides along their common border, i.e., both sets

are not strictly convex. This geometry is present in cases where both A{ matrices share

a common eigenvalue, eigenvector pair. While this occurrence is rare, since perturbing

an element of a matrix almost always changes all of the eigenvalues of that matrix,

software packages may fail in its presence (due to a non-unique optimal solution),

and thus we should be prepared for it. To counteract its effect, we simply project y

by multiplying both output equations by a matrix that eliminates the parallel part.

This operation will result in lower dimensional output sets which have no flat, parallel

sides. In the remainder of our discussion we will assume that such a projection has

Chapter 3. Model Identification via the Separating Hyperplane 71

been applied and the resulting lower dimensional output sets are strictly convex.

3.1.2 The Separating Hyperplane

A convenient feature of convex sets is the separating hyperplane [34]. Given two

disjoint convex sets, there exists a hyperplane that separates the sets; that is, one set

is above the hyperplane while the other set is below. Such a hyperplane exists for

the two output sets Al(v), and it contains the point y. In fact, because the corners

of the output sets are smoothed by the contribution of the noise "balls", and because

we have assumed a unique y, the separating hyperplane for the output sets is tangent

to both sets, and at any given time it is unique. By inserting a known output from

one of the models into the equation of the hyperplane (defined by its normal and a

point on the plane, in this case y), it can be determined whether that, set lies above

or below the plane. By inserting an output, the origin of which is unknown, into

the equation of the hyperplane, and subsequently observing the sign of the result, we

can determine from which model that output originates, and thus accomplish model

identification.

Mathematically, the existence of the separating hyperplane implies that there is

a function a(t) G L2 such that if we define

<Kv) = (a,y-y)= I' a(t)T[y(t) - y(t)} dt (3.3)
Jo

we have that 0 is nonnegative on one Al{v) and nonpositive on the other AJ{v). The

function a(t) is the normal to the separating hyperplane. We call <fi the test function.

Numerical and system error can cause the output sets to overlap when v is applied.

To compensate for this effect one would likely apply 5v with 5 a little more than one,

resulting in output sets from the two models which are such a distance apart that

their closures do not intersect. Thus, it will be important to have a test function that

works for detection signals larger than v.

Chapter 3. Model Identification via the Separating Hyperplane 72

Recall from Section 2.1.1, the output equation for each model is

y = ddiBiv) + CibiMißi) + Cie
Ai% + Km (3.4)

where CiCi(Biv) is a vector depending linearly on v. Applying 8v translates Al{0) by

8CiCi(Biv). Using 6 > 1 causes translation of A*{v) by (5 - l)d£iBiV. The vector y

was on the boundary of Ai{v). Thus y + (5 - l)Ci£iBiV is now on the boundary of

Ai(5v) and the two output sets are disjoint. As a result, the supporting hyperplane

at either y + (5 - 1)C0C0BQV or y + {5 - \)CiCxBiV is still a separating hyperplane

(not unique) and the normal is still a(t). Therefore, we may define the test function

Mv) = r «(*)T(y(t) - i/W - (5 - ^^dt (3-5)

where q(t) = TC0CQBQV + (1 - T)CICIBIV for a fixed 0 < r < 1. Note that choosing

q this way with 0 < r < 1 makes the test strictly positive on one output set and

strictly negative on the other, which is more computationally robust. In the examples

of Chapter 4 we choose r = \. See Figure 3.1 for a finite dimensional depiction of

this discussion.

3.1.3 Approximating the Separating Hyperplane

Unfortunately, no analytic characterization exists for the boundaries of the output

sets at y. This characterization is required for direct computation of the tangent at

the point of intersection. Thus, the equation of the separating (tangent) hyperplane

is hard to compute. One way to compensate for the lack of a characterization of the

output set boundaries at y is to artificially force the sets apart. Suppose we have done

so, and let the points on the boundary of each set which are closest to each other be

called yQ and y1: respectively. The equation of the line segment (y0 - yY) will be the

normal to a separating hyperplane for the forced-apart sets. This normal, along with

a point on the line segment, can be used to define the separating hyperplane. If the

Chapter 3. Model Identification via the Separating Hyperplane 73

output sets
under larger v

separating
hyperplane

new separating
hyperplane
(same normal)

output sets
under minimal v

Figure 3.1: Output sets under application of v and Sv, 8 > 1

sets have been separated correctly, this separating hyperplane will approximate the

separating hyperplane for the original output sets.

The accuracy of the approximation depends on how the sets are forced apart.

One way to do it is to shrink the contribution of the noise vectors. Since the noise

contribution to the output is a (possibly misshapen) "ball", multiplying the noise by

a factor, e < 1, will force the output sets apart in such a way that the accuracy of

the approximation can be made better by selection of a larger e.

In fact, reducing the noise contribution is equivalent to increasing the detection

signal. To see this fact, consider a generic model under the application of minimal

energy detection signal, v, and reduced noise, e//.

x' = Ax + Bv + Meß

y = Cx + Neß.

(3.6a)

(3.6b)

Chapter 3. Model Identification via the Separating Hyperplane 74

Multiplying both equations by \, we obtain

(D'-MiMD^ (3-7a)

(|) = C(^)+Jv> (3.7b)

Letting z = f, to = f and 6 = \, (3.7) becomes

z' - Az + BSv + Mfi (3.8a)

lü - Cz + Nfx (3.8b)

which is just the original generic model under the application of larger than minimal

detection signal, 5v, but with full noise contribution, \i. This equivalence is important

in that it allows us to use the model identification test function (3.5) for the reduced

noise problem as well as for the larger-than-minimum energy detection signal problem.

In terms of the output sets, the equivalence may be stated as follows: if A\{v) is

the output from model % using detection signal v and noise weighting e, so that

A[(v) = A{(v), then A\(v) = eA'^v).

3.1.4 Problem Statement

The discussion of the preceding section leads us to a new form for the system models.

x\ = AiXi + BiV + MiefMi (3.9a)

Vl = dxi + Nitm (3.9b)

for i = 0 and 1. To find the separating hyperplane for the output sets, we must find

the points on the boundaries of the closures of the sets that are closest to each other.

In order to include the boundaries of the otherwise open output sets, we must change

Chapter 3. Model Identification via the Separating Hyperplane 75

our bounded energy noise model to

|rf<l, « = 0,1. (3.10)

To compute the normal to the separating hyperplane, simply minimize \\y0 — yi\\2

subject to (3.9-3.10) using an optimal control package. SOCS is quite capable of

handling this problem. The solutions y0 and y1 obtained can be differenced and

normalized to compute the normal to the separating hyperplane. Any point on the

line segment between y0 and yx may be used as the defining point on the hyperplane.

See Figure 3.2 for a finite dimensional depiction of this discussion.

approx

Figure 3.2: Output sets under full and reduced noise contributions

As stated earlier, the accuracy of the approximation obtained from this problem

can be improved simply by selecting a larger e. A bound on the error is characterized

in the next section. With the problem now fully defined, we present the model

identification algorithm.

Chapter 3. Model Identification via the Separating Hyperplane 76

3.2 The Model Identification Algorithm

As described in Chapter 2, Boeing's SOCS package [3, 4] efficiently solves the op-

timization problem described above. MATLAB, by The MathWorks, Inc. [26] is

convenient for subsequent computations. While we do not use MAPLE, by Water-

loo Maple, Inc. [18] to generate FORTRAN code as for the MEDS algorithm, higher

dimensional problems will make it desirable to do so. The model identification (MI)

algorithm (with appropriate software in parentheses):

1. Let v be the minimum energy proper detection signal from the MEDS algorithm

(SOCS)

2. Choose a value for e < 1

3. Perform constrained optimization (SOCS)

min||y0-rf (3.Ha)

subject to the constraints

x'i = AiXi + B^ + Miem (3.11b)

Vi = dxi + NiefH (3.11c)

q[= £ßi, ft(0) = 0, ft(t/)<l (3.11d)

for i = 0 and 1

4. Let y0 e and y1>£ be the closest points computed by the optimization

5. Compute ae(t), the normal to the separating hyperplane (MATLAB)

Vo,e -Vi,e

\\yo,e - Vijl
(3.12)

Chapter 3. Model Identification via the Separating Hyperplane 77

6. Compute ye(t), the point on the separating hyperplane, as the midpoint of the

line segment connecting y0£ and yle (i.e., r = ^) (MATLAB)

yt = —2— ^ ^

7. Let 0e(-2) = (ae,z — ye) be the test function. Then

Myo) = (a€>yo-ye) >°

4>e{Vl) = (ac,yi ~Ve) <°

or vice versa, where yi is an unknown output from model i, i — 0 or 1

8. Suppose a known output from model 0 produces a positive test function value.

Then if an unknown output produces a positive test function value, it derives

from model 0. If the unknown output produces a negative test function value,

it derives from model 1. If a zero test function value is produced, an error has

occurred and a smaller value of e should be selected.

Note that as e —> 1, the computed normal approaches the true normal. Unfortu-

nately, numerical error in (3.12) increases when (1 - e) is very small due to division

by small numbers. Thus, (1 - e) should be chosen sufficiently large to ensure a dis-

crete distance between output sets, in order to reduce the effect of numerical error.

However, (1 — e) must be small enough to ensure that the skewing effect from the

weight matrices on the noise inputs are included, in order to increase the accuracy of

the computed normal.

The following theorem summarizes the accuracy of the computed test function

[12].

THEOREM 3.1. Let ac(t) be the normal from, the MI algorithm, using 0 < e < 1

and let y0e,y~ie be the values of y0,y\ that give the minimum distance. Let yc =

Chapter 3. Model Identification via the Separating Hyperplane 78

k(Vo,e + !/i,e)- Let the hyperplane test be

(ß€{w)=<at{t),w-y£> . (3.14)

Let 6(e) = l|g°-'~gl-«11. Then there is a constant K so that

6(e) < K{1 - e) (3.15)

and if we {A°e(v) \JA]{v)), then

tf,e(w) > 5{e) =* w e A°e(v) (3.16)

<t>eM < -5(e) =^ we A](v). (3.17)

Proof (from [12]) (3.16) and (3.17) follow from noting that <f>e(w) = 6{e) is the

supporting hyperplane of A°e(v) at y0e while <j)e(w) = -5(e) is a parallel supporting

hyperplane of A](v) &ty1>e. K can be taken as ||C0£oMo + No|| + ||Ci£iMi + iVi||. D

K is related to the linear operators applied to the noise vectors and is thus a

measure of the amount of skewing that occurs in the output sets due to the noise

input. In practice, the tests are often much better than the theorem indicates but

the result allows for highly skewed convex sets.

It is important to note that the MI algorithm can be used if the applied detection

signal is larger than the minimal proper. If v is proper and not minimal, then one

can set e = 1 in the algorithm and still obtain a nonzero distance between the output

sets, due to the equivalence between the reduced noise and increased detection signal

approaches. In fact, one can use a combination of both reduced noise input and

increased detection signal, which is useful when it is not known whether the detection

signal to be applied is minimal or not. This will be important when we discuss the

case with multiple fault models. A sample driver file for the MI algorithm coded in

Chapter 3. Model Identification via the Separating Hyperplane 79

SOCS, along with a MATLAB m-file for subsequent computations are in Appendix

A.

3.3 Variations

Like the MEDS algorithm, applications of the MI algorithm are limited by the as-

sumptions and formulation of the problem. Fortunately, the assumptions and for-

mulation of the model identification problem are much more conducive to extensions

than the minimum energy detection signal problem. Extensions are easily made to

multiple fault models, alternative formulations, pre-existing controls, alternative cost

functions, and different initial conditions.

3.3.1 Multiple fault models

The result of the MEDS algorithm consists of a group of disjoint output sets, one for

each possible model. Since we have no a priori knowledge of the spatial locations of

these sets, the MI algorithm must be used to separate each pair of sets. If there are

n possible models, then there will be ^""^ separating hyperplanes. Each output set

will exhibit a unique combination of test function signs (positive/negative), for those

test functions which can discriminate that output set.

For example, take the case in which three models exist for the system, and let

the output sets of the models be called Y0, Yi, and Y2. Let the hyperplane sepa-

rating Y0 and Y1 be called H0i, separating Y0 and Y2 be called H02, and separat-

ing Yi and Y2 be called Hx2. Finally, let the signs of the test function for output

y be (sgn(Hoi), sgn(H02), sgn(Hu))y. Suppose the known output from Y0 exhibits

(+,-,*), from Yi exhibits (-,*,+), and from Y2 exhibits (*,+,-), where * indi-

cates the inability of that test function to discriminate the output set. Then, a valid

Chapter 3. Model Identification via the Separating Hyperplane 80

unknown output exhibiting any possible combination of test function signs will fall

into one and only one of the output sets. Note that it is not possible for certain

combinations of test function signs to be exhibited by a valid output, (+, +, +), for

instance.

It should be noted that the minimum energy detection signal for the multiple fault

model problem may not be minimal for any of the pairwise problems. It will always

be proper due to the construction of the combined problem, but it may be larger

than required. In addition, it may not be apparent for which pairwise problem the

detection signal is larger than minimal. While approaches such as that of [30] must

use the minimal energy detection signal, the algorithm and test function described

in this chapter can still be applied when the detection signal may not be minimal

energy.

Finally, if the goal is to detect a fault, but it is not important to distinguish be-

tween fault models, the detection signal should be minimized by solving only those

pairwise problems including the nominal model (i.e., in the three model case, model

0 versus model 1, and model 0 versus model 2). The nominal model will be distin-

guishable from the fault models, but more than one separating hyperplane will be

required. Outputs from the fault models may wrap around the nominal model, in

which case a single hyperplane will not have the nominal model on one side and all

fault models on the other side. Examples of the multiple fault model problem are

included in the next chapter.

3.3.2 Alternative Formulations

Since the MI algorithm formulates the problem in terms of the original system ma-

trices, and no reduction in system dimension is attempted, the problem is already

in unreduced form. Thus, since parameters representing physical quantities are not

Chapter 3. Model Identification via the Separating Hyperplane 81

combined and sparsity is not lost, the question of whether or not to reduce the model

is not an issue as it was in the MEDS algorithm. While alternative formulations

are probably available, none could describe the problem as plainly, and in such a

straightforward manner as the present formulation.

3.3.3 Controlled Systems

As was the case for the MEDS algorithm, the presence of a known control does

not present any difficulty for the MI algorithm. The output of the MEDS algorithm

combines the known control with the detection signal. This combined signal is merely

a known input to the MI algorithm, and the fact that a control is present is transparent

to the algorithm. Other types of controls as described in Chapter 2 arc equally as

transparent.

3.3.4 Alternative Cost Functions

The issue of alternative cost functions arose in the MEDS algorithm because viable

alternative costs exist for that problem. In the MI algorithm, the cost function is

merely a means by which to compute the separating hyperplane via the two closest

points on the closure of each output set. Thus it is the closest points which are of

interest, and not the optimal cost. Therefore, the issue of alternative cost functions

is not important at all to the model identification problem.

3.3.5 Knowledge of Initial Conditions

The variation of the noise model presented in the "Variations" section of Chapter 2 is

as transparent to our MI algorithm as it is to the MEDS algorithm. The only change

occurs in the boundary conditions for the differential equation.

Chapter 3. Model Identification via the Separating Hyperplane 82

Recall, however that variations on the initial conditions led Nikoukhah, et al. [30]

in a different direction for computing v. While the separating hyperplane approach is

also utilized in [30], the method for computing it is quite different. Instead of formu-

lating an optimization problem, one of the Riccati equations solved while computing

v is used along with a new BVP. The normal to the separating hyperplane is shown to

be related to the Lagrange multiplier of the detection signal Riccati equation. Care

must be taken to avoid introducing large errors into the solution via the integra-

tion, but otherwise the computation of the normal is a simple BVP calculation. The

shortcoming of the approach is that it must use v, and not a larger multiple. By its

nature, the calculation uses the detection signal Riccati equation that produces v, so

öv, where 5 > 1, is not available. The MI algorithm has already been shown to be

robust to the use of larger multiples of v.

3.3.6 Conclusion

It is clear from the problem formulation, the algorithm description, and the above

exploration of possible variations to the model identification problem that it is much

simpler and more straight forward than the minimum energy detection signal problem.

The question of flexibility, i.e., how easy it is to adapt the algorithm to a larger set

of problems, is therefore quite easily answered: the MI algorithm can be adapted to

handle any problem the MEDS algorithm can handle. As was stated in the previous

chapter, while current theory for the multiple fault model case only provides for

problem development, it does not provide a practical means with which to solve the

problem. Our MEDS and MI algorithms not only provide theoretical development

for the multiple fault model case, they also supply a simple method for solving such

problems.

Chapter 4

Examples and Analysis of Results

4.1 The Complete Problem and Algorithm

Before beginning a discussion of the various examples to which the MEDS and MI

algorithms have been applied, it is beneficial to review the complete problem and

combined algorithm. Recall from Chapter 2, that the true model of the system is one

of two models

x'i = Ai%i + BiV + Mifii (4.1a)

y = dxi + Nifii (4.1b)

for i = 0 and 1. Our first goal is to apply the minimum energy detection signal, v, such

that the (convex) output sets of the two models are disjoint. Thus, a given output

may be derived from only one model. Our second goal is to compute the equation

of the hyperplane which separates the two output sets. From this equation we define

the test function. The substitution of known outputs from each model into the test

function will indicate the sign (+/-) that each set will exhibit. The substitution of

an output of unknown origin into the test function will result in a positive number

if it is derived from one model and a negative number if it is derived from the other

model. Thus the correct model for the system will be identified.

83

Chapter 4. Examples and Analysis of Results 84

These two goals are accomplished by the fault detection and model identification

(FDMI) algorithm (the combination of the MEDS and the MI algorithms), repeated

below (note: only the Version Two, non-Riccati form is repeated here, see Chapter 2

for other developed forms)

1. Perform QR decomposition on Nf

Nj = QA (4.2)

where the Qi are unitary matrices. Thus

Ni = RjQj (4.3)

2. Perform constant orthogonal coordinate changes on m

(a) Let Rj = [Ni 0], where JVj is invertible

(b) Let Qfßi = I I with the same partitioning as Rj. Thus
^i

Nan = [Ni 0] | ^ | (4.4)

(c) Let MiQi
T = [Mi Mi] with the same partitioning as Rf. Thus

- ~ (ß\
MUH = MiQfQjfii = [Mi Mi] J (4.5)

Note the system model, (4.1), becomes

x'i = AiXt + BiV + Milli + MijJii (4.6a)

y = CiXi + Nißi (4.6b)

3. Reduce model dimension by eliminating y and ~ß0

Chapter 4. Examples and Analysis of Results 85

(a) Combine both equations (4.6b) for y, solve for fi0, and substitute into

(4.6a), z = 0

x'Q = {A0 - M0N~'c0)xo + Mo^dxi + B0v + M0ß0 + M0N^NiTh

(4.7)

(b) Let

x=i °],A
Xi

A0-M0N0
lC0 M0No

lCr

0 A,
, B

B0

M =

r-l-
M0 M0N0 Ni 0

0 Mi Mi
, M MI

Note the system model, (4.6), is now

x' - Ax + Bv + Mji (4.8)

4. Compute new system matrices

-1~ T7-1 ^TT-lr
(a) Let C = [N0 C0 - N0 d] and N = N0 [0 iVi 0], with the columns of

N conforming to ß

(b) Let H = -4ßCTN and Q = 2ßCTC

(c) Let

R = 2

ßl 0 0

0 {l-ß)I + ßNT
lN-TN~lNl 0

0 0 (i-/5)/

with its rows and columns conforming to \i

Chapter 4. Examples and Analysis of Results 86

(d) Compute A, B, M, H, Q, and R

5. Perform constrained optimization. Solve

(7*)~2 = min / \\vfdt
v>ß Jo

(4.9a)

subject to the constraints

x' = Ax + Bv + Mfj, (4.9b)

A' = -Qx - \Hn - ATX, A(0) = \{tf) = 0
4J

(4.9c)

Z' = \ [xTQx + xTE\x + nTRn] , Z(0) = 0, Z(tf)>l (4.9d)

0 = Rfi + -HTx + MTX (4.9e)

0.01 < ß < 0.99 (4.9f)

6. Let v be the minimum energy proper detection signal

7. Choose a value for e < 1

8. Perform constrained optimization. Solve

min II2/0 — 2/i||2 (4.10a)

subject to the constraints

x\ = AiXi + Bid + Mi€(j,i (4.10b)

Hi = CiXi + Nit^i (4.10c)

q[= nJfii, ft(0) = 0, ft(t/)<l (4.10d)

for ? = 0 and 1

9. Let y0 e and y: be the closest points computed by the optimization

Chapter 4. Examples and Analysis of Results 87

10. Compute ae(t), the normal to the separating hyperplane

ac = „!0|g "-''■■ (4.11)

11. Compute ye(t), the point on the separating hyperplane, as the midpoint of the

line segment connecting y0e and yle (i.e., r = |)

= y0,e + yi,e (412)

12. Let 0£(^) = {ae,z - y£) be the test function. Then

<t>e{yo) = (o-€,yo-Vc) >0

<l>e{yi) = (a€,yi-ye) <o

or vice versa, where y* is an unknown output from model i, i = 0 or 1

13. Suppose a known output from model 0 produces a positive test function value.

Then if an unknown output produces a positive test function value, it derives

from model 0. If the unknown output produces a negative test function value,

it derives from model 1. If a zero test function value is produced, an error has

occurred and a smaller value of e should be selected.

4.2 Introduction of Software

As alluded to in previous chapters, Boeing's Sparse Optimal Control Software (SOCS)

is the main software in which the optimal control problems of the FDMI algorithm

have been coded for this thesis. System matrices are first reduced using MATLAB.

The reduced system matrices from MATLAB are inserted into the appropriate FOR-

TRAN subroutines. The dimensions of the reduced model's matrices are fed into

Chapter 4. Examples and Analysis of Results 88

MAPLE for the construction of the constraint equations. MAPLE's FORTRAN

translator is used to convert these equations into FORTRAN code which are then

pasted into FORTRAN subroutines for compilation and execution. MAPLE is used

to compute the constraint equations symbolically, so that the problems may by kept

in parameterized form. MATLAB is used to analyze and plot the output from the

SOCS routines

4.2.1 SOCS Parameters

In addition to the specific parameters for a given problem, SOCS allows the user to set

various general parameters which control the optimization method and convergence

tolerances. In Chapter 1, we described several discretization methods implemented by

SOCS. By setting two control parameters we have selected the Compressed Hermite-

Simpson discretization method for all examples. While it is possible to substitute

another method to solve the resulting finite dimensional problem, we have not done so,

but instead have used the default SQP method supplied in SOCS. This combination

of discretization method and nonlinear program solver exhibits good convergence

properties and efficient use of central processor unit (CPU) time and is well suited

to the types of differential equations, and I? and algebraic constraints present in our

problem set. Options that control the operation and convergence of the optimization

program are:

• Sparsity - If set to "sparse," the program takes advantage of sparsity in

user supplied constraints. Our constraints are sparse, so this option is

used.

• Initial guess type - The user has several options available to supply an

initial guess for the optimization program. Choices range from a linear

interpolation between endpoint values, to construction of an initial guess

Chapter 4. Examples and Analysis of Results 89

from a user-supplied B-spline definition or explicit calculation at each of

the initial mesh points. All of our examples use the linear interpolation

option. While this often results in an infeasible initial guess, in every

case the program rectifies this condition after a few constraint satisfaction

iterations.

• Initial mesh size - The user sets the size of the initial mesh. To reduce

unnecessary computation, the initial mesh should be the coarsest possible

that allows the program to attain constraint satisfaction after a few iter-

ations. If the initial guess is already feasible, the initial mesh size should

be left at the default value of 10. Several of our examples require a finer

initial mesh than the default in order to attain constraint satisfaction.

• Discretization order and stage number - When set to the appropriate

values, the program uses a high order discretization method and stage

number for mesh refinement. While not used in our examples, this option

may be useful in higher dimensional problems.

• Tolerances - The user may set tolerances for the relative error in the

objective function and the differential equation constraints, as well as

various absolute errors. These tolerances may be set to different values for

the two different phases of the optimization (discretization and nonlinear

program solver). Several of our tolerances are set tighter than default

values to obtain more accurate solutions, resulting in modest increases in

CPU times.

Samples and discussions of the MATLAB, MAPLE, and SOCS routines used to gen-

erate the results of this chapter are depicted in Appendix A.

Chapter 4. Examples and Analysis of Results 90

4.2.2 Choosing a Value of e

In the previous chapter, we mentioned that difficulty may arise in choosing the value

of the noise multiplier, e, in the model identification part of the algorithm. There we

noted that as e -» 1, the computed normal to the separating hyperplane approaches

the true normal, but numerical error increases also. We concluded that (1 - e) should

be chosen sufficiently large to ensure a discrete distance between output sets, in

order to reduce the effect of numerical error. However, (1 - e) must be small enough

to ensure that the skewing effect from the weight matrices on the noise inputs are

included, in order to increase the accuracy of the computed normal.

To test the effect of different values of e on the accuracy of the computed normal,

we ran several different models with different values of e. We found that the normal

is not very sensitive to the value of e as long as e is not too small. To ensure a discrete

distance between output sets without reducing the skewing effect of the coefficient

matrices on the noise vectors, we chose e = 0.7 for all examples. A sample plot of the

computed normal of one example problem for e = 0.3,0.5,0.7,0.9 is shown in Figure

4.1.

4.3 Introduction of Examples

To test the operation of the algorithm, as well as to examine how results vary with

the problem, we have applied the FDMI method to fourteen examples. Four of these

examples are one-dimensional problems, and are examined to shed light on the per-

formance of the algorithm on stable-to-stable and stable-to-unstable fault situations.

One of these examples is coded in all four formulations of the algorithm in order to

compare the relative computational performance of the different formulations. Seven

examples are two-dimensional problems, and are examined to shed light on several

Chapter 4. Examples and Analysis of Results 91

0.5

-0.5

/ \

1 1 1 1 i

/ \
/•' \ / \
i \ / x
.

V A

r

\

•■•• 0.3
- - 0.5

1 1 i i i

■-■ 0.7

— 0.9

Figure 4.1: Typical variation of o,€(t) with e

Chapter 4. Examples and Analysis of Results 92

phenomena of interest. These phenomena include:

• v, 7*, ye and ae(t), and how each varies with the problem and the interval

length,

• how results differ between stable-to-stable and stable-to-unstable oscilla-

tory systems (i.e., with imaginary or complex eigenmodes),

• whether the algorithm will work for systems with common modes (i.e.,

unobservable systems).

Another example is three-dimensional, a real world control system; it is examined

to determine the efficiency of the algorithm for larger scale systems. The last two

examples are each systems with a nominal model and two fault models. One of these

is one-dimensional and the other is two-dimensional. These examples are included to

demonstrate how the algorithm handles multiple fault model systems. Overall, the

example suite provides the basis for a comprehensive analysis of the FDMI algorithm,

its strengths, as well as a few of its weaknesses.

4.4 One-Dimensional State Examples

To begin our analysis, we look at four one-dimensional examples. The very first

example is coded in all four formulations of the algorithm. This is done both to

confirm results between formulations and to attempt to determine if one formulation

is more efficient than the others. The remaining examples shed light on the shape

and energy of the minimum energy detection signal, v, as well as the shapes of the

normal to the separating hyperplane, ae(t), the midpoint of the shortest line segment

between the output sets, y£(t), and the separability index, 7*, for one-dimensional

problems.

Chapter 4. Examples and Analysis of Results 93

4.4.1 Primary One-Dimensional Example

We begin with the simplest problem for which all terms appear.

EXAMPLE 4.1. [Change of eigenvalue, stable-to-stable] This problem, corresponds

to the case where there has been an internal change in some system parameter such

as friction in a joint or resistance of a resistor.

x0 —

V =

y =

-2x0 + v + fi2

-Xi +v + flA

Xi + /i3.

(4.13a)

(4.13b)

(4.13c)

(4.13d)

This problem, as well as each subsequent example, is formulated such that the

constant change of coordinates described in the algorithm is unnecessary. Model

reduction is much more straightforward with this formulation, but no generality is

lost in the process. Figures 4.2-4.3 depict v for tj - 1,10, 20,100 respectively. Figure

4.4 shows v for tj = 20,100 plotted to the same scale.

01 02 03 04 05 OS 07 08 09 I

Figure 4.2: v, for Example 4.1: tf = 1 (left), tj = 10 (right)

Chapter 4. Examples and Analysis of Results 94

10 20 30 40 50 60 70 80 90 100

Figure 4.3: v for Example 4.1: tf = 20 (left), tf = 100 (right)

10 20 30 40 SO 60 70 BO 90 100

Figure 4.4: v for Example 4.1: tf = 20,100

Chapter 4. Examples and Analysis of Results 95

Figure 4.5 shows the relationship between 7* and the interval length. Table 4.1

compares 7* and v for various interval lengths.

10 20 30 tO 50 60 70 80 90 100

Figure 4.5: 7* for Example 4.1 as a function of tj

Table 4.1: 7* and ||u|| for Example 4.1: tf = 1,10, 20,100

/ 7 V

1 0.02075 48.1919

10 0.18719 5.3423

20 0.19498 5.1288

100 0.19736 5.0669

As the plots and the table show, the energy of v decreases as the interval length

increases. However, once a threshold interval length is reached, no significant de-

crease in the energy of v, or increase in 7* occurs. It should be noted that as the

interval length decreases, 7* becomes very small, indicating the difficulty involved in

distinguishing between the two models on very short intervals. Since ||u|| is equal to

the reciprocal of 7*, the energy of the detection signal will be extremely large on very

short intervals. The threshold for Example 4.1 appears to be near tj — 15, so that in

Chapter 4. Examples and Analysis of Results 96

the case where tf = 1 the energy of v is quite significant.

As to the shape of v on different intervals, Figure 4.6 compares v for the different

intervals after rescaling in both magnitude and duration. The innermost line is v for

tf = 1, continuing outward so that the outermost line is v for tf = 100. It is clear

that v is not the same function on different intervals. In [29] it was observed that

v for the discrete problem begins to resemble the product of sine functions as the

interval lengthens. Figure 4.6 also demonstrates this resemblance, though in a more

approximate sense than was demonstrated in [29].

' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.

Figure 4.6: Rescaled v for Example 4.1: tf = 1,10, 20,100

Figure 4.7 gives the ye(t) and a£(t) for various values of e. For Example 4.1, the

noise input is not skewed at all by its coefficient matrix, so we would expect the

separating hyperplane to be insensitive to the value of e. Figure 4.7 clearly shows

that ye(t) and ae(t) do not vary significantly across the full spectrum of possible values

of e for this problem.

Chapter 4. Examples and Analysis of Results 97

01 02 03 04 05 06 07

Figure 4.7: ye(t) and ac(t) for Example 4.1: e = 0.3,0.5,0.7,0.9

As mentioned previously, Example 4.1 is coded in all four formulations of the

FDMI algorithm. The results discussed above are from the Version One, non-Riccati

form of the algorithm, but thorough comparisons have shown that the results are

equivalent from all four forms. Table 4.2 summarizes the performance of all four

formulations: Version One, non-Riccati (InR) and Riccati (1R), and Version Two,

non-Riccati (2nR) and Riccati (2R). Each was run on the intervals [0,1], [0,10], and

[0, 20] for a total of twelve runs. Ten of the runs use an initial mesh size of 50. For

tf = 1, the 2R formulation would not converge using this initial mesh size, as was also

the case for tf = 20 in the InR formulation. Both converged using an initial mesh size

of 11, so that value was substituted. Those entries in the table are in boldface type.

Non-convergence of the SOCS program occurs occasionally and is usually clue to the

combination of infeasible initial conditions and a failure to resolve system dynamics

on a specific mesh. In addition, a few of the problems produced early program termi-

nations due to the magnitude of the objective function. With an objective function

on the order of 10~4, the change in objective function values between iterations is

commonly on the order of 10~6. The default SOCS objective function error tolerance

is 10-5, and thus productive reductions in the objective function may be lost due to

Chapter 4. Examples and Analysis of Results 98

program termination before they occur. To counteract this effect, the objective func-

tion for those problems exhibiting this phenomenum is rescaled by 106. The scaling

factor was removed before the data was tabulated. Later, we refer to this rescaling

of the objective function as conditioning.

Table 4.2: Formulation comparison of Example 4.1: £/ = 1,10,20

*/ = l t.f = io t, = 20
Form CPU Time Iterations CPU Time Iterations CPU Time Iterations

InR
2nR
IR
2R

61.55
181.56
72.89

138.17

3
4
4
6

96.16
67.54

68.6
67.9

3
3
3
3

67.04
290.94
130.14
125.34

6
4
4
4

As the table indicates, results were not consistently better for any formulation.

While formulation InR is as good as, or better than the others in four of the six

columns, it is worse by 50% in the other two columns. Since there is no clear winner,

and since it is also not our intent to recommend one formulation over any other,

we chose to run the remaining models in formulations InR or 2nR. These formula-

tions provide a more direct correlation with the original problem parameters and are

simpler to encode. In addition, neither form requires Riccati equations. The direct

transcription approach taken by SOCS converts every problem into a boundary value

problem, even those in Riccati form. This translation removes all of the usual ad-

vantages of the Riccati approach. Formulation 2nR provides excellent compatibility

between the minimum energy detection signal and model identification parts of the

algorithm, while some rescaling of results is required in formulation InR. For this

reason, our higher dimensional examples are coded only in formulation 2nR. The

formulation used is transparent to the results presented below.

Chapter 4. Examples and Analysis of Results 99

4.4.2 Other One-Dimensional Examples

The remaining one-dimensional problems are similar to Example 4.1. Plots of v

for each problem, as well as comparisons to Example 4.1 follow the last problem

definition.

EXAMPLE 4.2. [Change of eigenvalue, stable-to-unstable] This is also a simple

problem corresponding to a change in a system parameter, but here the fa,ult m,odel is

unstable.

A = -xo + v + na (4.14a)

y = zo + ^i (4.14b)

x[= -Xi + v + fJLi (4.14c)

y = zi+^3- (4.14d)

EXAMPLE 4.3. [Severe change of eigenvalue, stable-to-stable] Tins problem is

similar to Example J^.l, but the parameter change is more severe, indicating stiff

dynamics.

x'0 = -X0 + V + /J.2 (4.15a)

y = xo + fi! (4.15b)

x\ = -30a;i +v + /%i (4.15c)

y = xi+Hz- (4.15d)

EXAMPLE 4.4. [Severe change of eigenvalue, stable-to-unstable] This problem is

similar to Example 4-2, but the unstable mode's parameter change is severe, indicating

Chapter 4. Examples and Analysis of Results 100

highly unstable dynamics.

x'o = -x0 + v + fi2 (4.16a)

y = x0 + ^ (4.16b)

x[= SOxi + v + Hi (4.16c)

y = X!+n3. (4.16d)

Figure 4.8 gives v for Examples 4.2 -4.4 for tf = 1. Table 4.3 compares the

separability indices and the energy of v for Examples 4.1-4.4 on the intervals [0,1]

and [0,10]. As the plots show, the shape of v is similar for all of the one-dimensional

problems in the set. Example 4.2 admits a lower energy minimum proper detection

signal than Example 4.1 on the same interval. This is as expected since the two models

of Example 4.2 have more contrasting dynamics than in Example 4.1. Examples 4.3

and 4.4 exhibit even sharper changes in dynamics, and the much lower energy v for

each of those problems on the shorter interval bears witness to that fact.

As the interval lengthens, however, the differences narrow. On [0,10], Example 4.1

still requires significantly more energy in v than the other examples. The unstable

mode of Example 4.2 and the large changes in dynamics of Examples 4.3-4.4 still

allow for easier separation of the models of these problems. The differences between

the last three examples, however, are much smaller than on the [0,1] interval. In fact,

Example 4.2 now requires less energy than the other two examples. This indicates

the expected result: problems with more distinct models are not as sensitive to the

test period length as those with similar models. Obviously, extremely short intervals

will present difficulties for all problems, but problems with distinct models will be

less sensitive on those intervals, i.e., they will produce a larger 7* and will thus be

easier to separate than problems with more similar models.

Figure 4.9 shows all of the v curves on the same plot, each rescaled to a maximum

Chapter 4. Examples and Analysis of Results 101

Figure 4.8: v for Examples 4.2 (left), 4.3 (center), 4.4 (right): ts = 1

Table 4.3: 7* and ||v|| for Examples 4.1-4.4: tf = 1,10

tf = l */ = io
Example 7* V 7* V

4.1 0.02075 48.1919 0.18719 5.3423
4.2 0.03261 30.6690 0.69849 1.4317
4.3 0.13418 7.4524 0.38687 2.5848
4.4 0.14344 6.9717 0.41355 2.4181

Chapter 4. Examples and Analysis of Results 102

height of one. It is interesting to look at this combined v plot. With tf = 1 the v of

Examples 4.1 and 4.2 are superimposed on each other, as are the v of Examples 4.3

and 4.4. A mathematical examination reveals a maximum difference of about 0.0.03

between the v of Examples 4.1 and 4.2. On a longer time interval, the two v are

still very similar but there is a more visible difference. The fact that the two v are

so similar suggests that for some classes of problems one could use the same v for a

number of different fault models, changing only the gain to ensure that it is proper.

i2 0.3 0.4 0.5 0.6 0.7 OB 0.9 1

Figure 4.9: v for Examples 4.1-4.4: £/ = 1

Figure 4.10 gives ye(t) and ae(t) for Example 4.4 for various values of e. As we

saw in previous plots of the parameters of the separating hyperplane, they are quite

insensitive to the value of e. In fact, for this problem, the plots for the different values

of e are superimposed on each other. The insensitivity of the parameters to the value

of e is encouraging in that it allows some assurance of computing a valid test function

for virtually every possible output from competing models of the problem.

It should be noted that each ae(t) computed by the algorithm has been checked

against those functions to which it should be orthogonal. That is, for the output

Chapter 4. Examples and Analysis of Results 103

0 0.1 02 03 04 05 06 07 08 0

Figure 4.10: y((t) and ae(t) for Example 4.4: e = 0.3,0.5,0.7,0.9

given by

V = CiCi(Biv) + CiCiiMiin) + deAi% + Nun (4.17)

the normal to the separating hyperplane should be orthogonal to deAit£i. The inner

products of the computed normal and CieAii^i were within 10-6 of zero for each value

of e in every example.

4.5 Two-Dimensional State Examples

We continue our analysis by examining seven two-dimensional examples. Six of these

examples exhibit properties that help to shed light on the shape and energy of the

minimum energy detection signal, v, as well as the shapes of the normal to the

separating hyperplane, ae(t), the midpoint of the shortest line segment between the

output sets, ye(t), and the separability index, 7*, for two-dimensional problems. The

first of these six was run on seven different interval lengths in order to examine the

oscillatory properties of v. The seventh example is constructed to be unobservable in

order to test the algorithm's capability to handle such problems.

Chapter 4. Examples and Analysis of Results 104

4.5.1 Primary Two-Dimensional Example

In Example 4.5 we find a problem for which the shape of v varies considerably with

the interval length.

EXAMPLE 4.5. [Change of eigenvalues, neutral stability] This problem has purely

imaginary eigenvalues. The only difference between models is a change in eigenvalues

from ±3i to ±2i.

(4.18a)

(4.18b)

(4.18c)

(4.18d)

(4.18e)

(4.18f)

Figure 4.11 shows vfortf = l, 20. Figure 4.12 shows v for tf = 1, 2,4,6,8,10,20.

In the tf = 1 case, v resembles the detection signal in the one-dimensional cases

studied, but at longer intervals we get a very different v. Oscillations are introduced,

and the number and period of the oscillations depend on the interval length. It should

be noted that the plots in Figure 4.12 are actually 7*^, i.e., they were computed

in formulation InR but not rescaled by the reciprocal of the separability index as

required in that formulation (see Chapter 2). Not performing the rescaling allows

for a meaningful comparison of the various shapes of v, but does not allow for a

comparison of ||u|| between intervals. If the plots were rescaled by ^r, the tf = 1,2

cases would dwarf all others in magnitude, and the curve shape comparison would be

impossible.

Table 4.4 shows \\v\\ and other quantities of interest for Example 4.5 on each

XQ = ZQ + ^3

4 = -9X0 + V + fl2

y - ^0 + ^1

x[= Z\ + fJ-6

A = -4a;i + V + fjL5

y = X\ + ^4-

Chapter 4. Examples and Analysis of Results 105

0.1 0! 03 0< 05 06 07 08 09 1 S B 10 12 U 16 IB X

Figure 4.11: v for Example 4.5: tf = 1 (left) and tj = 20 (right)

0 12 3

Figure 4.12: v for Example 4.5: */ = 1,2,4,6, 8,10, 20

Chapter 4. Examples and Analysis of Results 106

interval tested. We used an initial mesh size of 50 for all but the tf — 10 case.

That case required an initial mesh of 20 in order to attain feasibility. This resulted

in more iterations before convergence, but still gave CPU time comparable to the

first four cases. As always, CPU times should only be used as rough indicators since

they often vary greatly. As an example, note that the CPU time for the tf = 8

case is an unexplainable outlier. For the tf = 12,14,16,18 cases we used default

tolerances which are looser than the tolerances used in all other cases. This was done

to demonstrate the efficiency of the software under default conditions. Note the CPU

times for these cases are considerably lower than the other cases and the number of

iterations have not increased. Aside from the difference in tolerances and the natural

variation often present, the presence of inconsistent CPU times may indicate the need

to optimize either the conditioning on the objective function or the initial mesh size

for each interval.

Also note the steady decrease of ß as the interval lengthens. This effect is probably

due to the difference in dynamics between models becoming more significant as the

detection interval lengthens.

Finally, notice that 7* is extremely small on the shorter intervals. As the interval

lengthens, however, 7* grows to be larger than that for the one-dimensional Example

4.1. Thus, Example 4.5 requires a higher energy v than Example 4.1 on the shorter

intervals, but a lower energy v on longer intervals. Figure 4.13 depicts the relationship

of 7* to the interval length for this example, and a comparison to 7* from Example

4.1.

Figure 4.14 gives y€(t) and ae(t) for Example 4.5, for various values of e, and

for a typical interval length, tf = 6. Contrary to what we saw in previous plots

of the parameters of the separating hyperplane, these plots depict some sensitivity

to the value of e. This sensitivity indicates that one should not blindly choose a

value of e for a given problem without first determining whether the value of e is

Chapter 4. Examples and Analysis of Results 107

Table 4.4: Performance comparison of Example 4.5 on various time intervals

tf 7* ß CPU Time Iterations

1 0.72694 *10~3 0.500104 850.94 3
2 0.14710* 10"1 0.501659 388.05 3
4 0.91764 *10-x 0.502983 867.55 5
6 0.18093 0.463663 960.15 4
8 0.23532 0.469403 4580.01 5
10 0.27321 0.404642 836.74 9
12 0.29050 0.351149 264.08 5
14 0.30296 0.315157 267.95 5
16 0.31787 0.293182 259.66 5
18 0.32954 0.262228 330.09 5
20 0.33806 0.240156 9464.59 6

30 35 40

Figure 4.13: 7* for Example 4.5 as a function oft/ (left),
compared with Example 4.1 (right)

Chapter 4. Examples and Analysis of Results 108

a factor. For this problem, and most likely many others, the value of e affects the

accuracy of the approximation to the true separating hyperplane, and thus should be

chosen to minimize the error while ensuring a positive separation between output sets.

Fortunately, tests thus far indicate that the calculations are reasonably robust and

parameters are usually not highly sensitive to the value of e. In addition, ae(t) varies

smoothly with e, and thus one can guarantee high quality results by experimenting

with e values. Ultimately, if perfect model identification is required, one should apply

8v with 6 > 1 and use e = 1 in the MI algorithm. Additional energy in v is a small

price to pay to guarantee that a(t) is accurate to within machine precision.

f \

.

^^&

■■•• 0.3
--0.5

■-■ 0.7

, , < ' — 0.9

Figure 4.14: ye(t) and ae(t) for Example 4.5: e = 0.3,0.5,0.7,0.9

4.5.2 Other Two-Dimensional Examples

The remaining two-dimensional examples, while exhibiting various dynamical and

weighting properties, all possess similar v and ae(t) qualities. Thus, they will be

treated together.

x0 = Zo + 5/t3

4 = -9x0 + v + 4//2

y = X0 + //i

x\ = z\ + fie

A = -4.Ti + V + fi5

y = xi + m.

Chapter 4. Examples and Analysis of Results 109

EXAMPLE 4.6. [Change of eigenvalues, neutral stability] This problem has the

same change in eigenvalues from ±3i to ±2i as Example 4-5- It also has different

weighting on the noise matrix, Mo-

(4.19a)

(4.19b)

(4.19c)

(4.19d)

(4.19e)

(4.19f)

EXAMPLE 4.7. [Change of eigenvalues, neutral-to-unstable] This problem has

eigenvalues which change from purely imaginary, ±3i, to complex unstable, ^ ± 3i.

x'o = z0 + ß3 (4.20a)

4 = -9x0 + v + ß2 (4.20b)

y = xo + fii (4.20c)

x[= Zi + ne (4.20d)

z[= -g.Olxi + -zx + v + ß5 (4.20e)

y = Xl+IM- (4.20f)

Chapter 4. Examples and Analysis of Results 110

EXAMPLE 4.8. [Change of eigenvalues, neutral-to-stable] This problem has eigen-

values which change from purely imaginary, ±3i, to complex stable, — ^ ± 3i.

x'0 = zo + ßs (4.21a)

z'Q = -9x0 + v + u.2 (4.21b)

y = xo + ^i (4-21c)

xx

z'

zx + Me (4.21d)

1 - -9.01xi--Z! + v +& (4.21e)

y = ^i + ^4. (4.2lf)

EXAMPLE 4.9. /]Vo change of eigenvalues, neutral stability] This problem has no

change in dynamics. Both models have eigenvalues of ±3i. The difference between

models is a change in weighting of the noise matrix, Mi, and the output matrix, C\.

x'0 = z0 + ß3 (4.22a)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

(4.22f)

4 = -9x0 + v + \±2

y = XQ +/ii

x\ = z\ + 2/i6

A = —9a;i + v + 3//5

y = 5xi + /i4.

Chapter 4. Examples and Analysis of Results 111

EXAMPLE 4.10. [Change of eigenvalues, stable-to-stable] This problem has eigen-

values which change from complex stable, — 1 ± 3i, to complex stable, —2 ± 2i.

z'o = -xo + z0 + Hz (4.23a)

4 = -9a;o - zo + v + [ii (4.23b)

y = x0 + /ii (4.23c)

x[= -2xi + z\ + He (4.23d)

z[= -4.Ti - 2zi + v + ß5 (4.23e)

y = X!+/x4. (4.23f)

On the left side of Figure 4.15 is v on the interval [0,1] for Examples 4.5-4.10.

Some scaling problems exist among the examples on this interval, so this plot is left

unrescaled as before. Note that, for the first time thus far, we have some oscillations

in v on our shortest interval. This indicates that, for those problems which exhibit

the oscillation, [0,1] is a long interval relative to their dynamics. This result is not

surprising, as we would expect the dynamics of the problem to influence the affect of

a given test period length on the detection signal.

The right side of Figure 4.15 shows the same information on the interval [0,10].

Here, the scaling problem is not as severe, so each v has been rescaled by -^. Note

that one problem, Example 4.9, exhibits a single-lobed v, in contrast to all other two-

dimensional problems so far on this interval. Recall that this example has no change

in dynamics between models, but only various different weight matrices. Thus we

should expect for this type of problem that v merely has to contain enough energy to

drive the output sets apart without requiring any complex wave form, as in the one-

dimensional problems examined previously. Figure 4.16 gives all examples exhibiting

a simple v for the case t; — 10. These plots are all scaled properly, and the highest

Chapter 4. Examples and Analysis of Results 112

energy plot is that of Example 4.9.

As we mentioned in the previous section, [29] observed that the v seem to lie in

a region bounded by half of a period of the sine function. Figure 4.17 shows this

by plotting the same information as Figure 4.15 (right), with each curve normalized

in energy. It is quite apparent that all oscillations of the various v do occur in an

envelope that resembles the sine function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AA 1A -

• ^ 11 \ \ m\
—l—Mü_

rf^/v/~

\\ / 1 w 1 \l T4.6 / \ /

^ 1 V / 1 ^

1 / vA-4-to
/ <-4.7,4.8 -

12 3 4 5 7 8 9 10

Figure 4.15: v for Examples 4.5-4.10: tf = 1 (left), tf = 10 (right)

Table 4.5 compares various quantities from Examples 4.2-4.4 and 4.5-4.10 for

tf = 1, while Table 4.6 does the same for tf = 10. Again, an initial mesh of 50

was used for all examples, except Examples 4.2, 4.5, 4.9, and 4.10 on [0,10] used an

initial grid of 20 for the feasibility reasons mentioned above. It is clear from Table

4.5 that the one-dimensional examples, along with the two-dimensional example with

unchanging dynamics, possess higher separability indices than the two-dimensional

examples with changing dynamics, and thus admit a lower energy v. This difference

Chapter 4. Examples and Analysis of Results 113

9 10

Figure 4.16: v for Examples 4.2,4.3,4.4,4.9: tf = 10

0.6

0.4-

-0.2

-0.8

 1 1 r- i ! !

A[\^—ft—H—%-if-9 / V-47,4.8

V-46

/ T4.10

\ 1Ä! // 1V w '//<-4.5 -

i i i i i [1

0 12 3 4 5 6 7

Figure 4.17: Normalized v for Examples 4.5-4.10: tj = 10

Chapter 4. Examples and Analysis of Results 114

is somewhat clouded as the interval lengthens to 10, indicating that, on longer inter-

vals, the energy required in v becomes more dependent on system dynamics than on

problem dimension or simplicity.

Table 4.5: Performance comparison of Examples 4.2-4.10: tf = 1

Example 7* ß CPU Time Iterations

4.2 0.32606 * 10"1 0.499823 38.69 2
4.3 0.13418 0.509624 310.90 4
4.4 0.14344 0.509624 234.53 4
4.5 0.72694 *10-3 0.500104 850.94 3
4.6 0.69719 *10~3 0.520423 829.42 3
4.7 0.13485 *10~3 0.499998 1535.48 3
4.8 0.13485 *10~3 0.499998 533.84 3
4.9 0.64642 * 10-1 0.314308 795.85 3

4.10 0.12853* 10-2 0.500149 870.98 3

Table 4.6: Performance comparison of Examples 4.2-4.10: tf = 10

Example 7* ß CPU Time Iterations

4.2 0.69849 0.418685 31.37 4
4.3 0.38687 0.579995 838.09 7
4.4 0.41355 0.579995 1281.74 8
4.5 0.27321 0.404642 836.74 9
4.6 0.17170 0.529625 8490.14 5
4.7 0.29614 *10"1 0.504179 7165.95 8
4.8 0.29614 *10-1 0.504179 2657.45 5
4.9 0.14981 0.335714 2971.26 6

4.10 0.38458 * IQ"1 0.514021 469.30 7

Figure 4.18 gives a typical y£(t) and at(t) for these examples.

Chapter 4. Examples and Analysis of Results 115

01 02 03 04 05 06 07 OB 09 1 1 02 03 04 05 06 07 00 09 1

Figure 4.18: ye(t) and ac(t) for Example 4.10: e = 0.7

4.5.3 Common Mode Two-Dimensional Example

For our last two-dimensional example we present a problem in which the two models

share a common eigenvalue, eigenvector pair.

EXAMPLE 4.11. [Shared eigenvalue, unsta,ble-to-unstable] This problem has a

change in its first eigenvalue from 2 to 3. The other eigenvalue does not change

between models. It remains at 1.

Xc\

X,

1 0
Xo +

2 1
v +

0 0 0 1

0 2 1 2 0 0 10

1 0
Xo +

0 1 0 0
Mo

0 1 1 0 0 0

1 0
Xi +

2 1
v +

0 0 0 1

0 3 1 2 0 0 10

1 0
X\ +

0 1 0 0
Ml-

0 1 1 0 0 0

Mo

fj-l

(4.24a)

(4.24b)

(4.24c)

(4.24d)

Both models of this example are controllable and observable. To sec this fact,

Chapter 4. Examples and Analysis of Results 116

recall from Chapter 1 that a second-order system is controllable if and only if [si -

A | B] has rank 2 for all values of s. The same system is observable if and only if

[si - AT | CT] has rank 2 for all values of s [6]. Clearly, both models of Example 4.11

are controllable since B0 and Bi are full rank by themselves. Both models are also

observable since the same holds for Cj and Cj. However, the fact that there exist x0

and xi subspaces on which the dynamics and the outputs are the same is equivalent

to saying that the combined system is not observable. These subspaces exist because

e'&A
x =

0
(4.25)

/

is a solution of the free response for both of them. Thus each output set has a parallel

side in the long direction.

In terms of the FDMI algorithm, as it attempts to separate the output sets in the

detection signal phase, the last points to touch will be those on the parallel side. Many

states and outputs will be eligible to be part of the optimal solution, and because of

this nonuniqueness, the algorithm may be unable to choose one. Simply stated, the

two models may not be different enough for the algorithm to find a unique minimal v.

Even if it is possible to choose an optimal solution from the equivalent candidates in

the detection signal phase, the model identification phase also separates the output

sets. As the algorithm searches for the closest points on the closure of each set, it will

again find many eligible points on each parallel side, and may be unable to choose.

In fact, this problem does occur in Example 4.11. As mesh refinements are made

and the dynamics are resolved to near-tolerance accuracy, the algorithm terminates

with a warning about degenerate constraints and SQP errors. (When the problem is

modified to remove the parallel sides, all errors disappear and the problem converges

to any desired tolerance.) Despite the errors, the dynamics are resolved quite accu-

rately, down to the 1CT6 level. In addition, the algorithm is converging to a solution

Chapter 4. Examples and Analysis of Results 117

before the errors occur. So it appears that the algorithm is able to handle this type

of problem despite the lack of uniqueness of the optimal solution. Figures 4.19 and

4.20 give v, ye(t), and ae(t) for this problem on the interval [0,5].

05 1 15 ? ?5 3 35

Figure 4.19: Components of v for Example 4.11: tf = 5

Figure 4.20: Components of yc(t) and ac(t) for Example 4.11: e = 0.7

If the FDMI algorithm is not able to solve a given problem with common eigen-

value, eigenvector pairs between models, we have the option of truncating the outputs.

That is, we multiply outputs from both models by the same matrix, annihilating the

Chapter 4. Examples and Analysis of Results 118

identical part, and solve the resulting lower dimensional problem as before. Testing

of this procedure will be left to future research.

4.6 Industrial Example

We now turn to a real world example in order to test the performance of the FDMI

algorithm on larger scale problems. The problem is the equalized and linearized model

of a single-engine F-16 aircraft [39]. The model has a three-dimensional state, and

the dynamics include a reference control input.

EXAMPLE 4.12. [Change of eigenvalues, stable-to-unstable] The nominal model

of this problem has one stable real eigenvalue, and two stable complex eigenvalues.

The fault model has three unstable real eigenvalues.

Xr, —

-0.1689 0.0759 -0.9952

-26.859 -2.5472 0.0689

9.3603 -0.1773 -2.4792

0 0
(A

XQ + 1 0

0 1 u +

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

Mo

(4.26a)

1 0 0

0 0.9971 0.0755
XQ +

0 10 0 0

10 0 0 0
Mo- (4.26b)

A fault model simulating an electrical interruption to a flight control computer's input

channels may be represented as

1 1 0 0 0

M 0 1 1 Xi + 1 0 J +
0 0 1 0 1 \ /

1 0 0

0 0.9971 0.0755
X\ +

0 0 0 0 1

0 0 0 10

0 0 10 0

0 10 0 0

10 0 0 0
Ml-

Mi (4.26c)

(4.26d)

Chapter 4. Examples and Analysis of Results 119

The three states are side-slip, roll rate, and ya,w rate, and the control vector is

(rudder input

stick input

Assuming that the detection signal is applied on the same channels as the control

vector during the test period, one of the following occurs:

• the control is nulled so that only the detection signal is inputted,

• the control remains. It is subtracted from v from the MEDS algorithm

to obtain the additional signal required to separate the output sets of the

two models.

The second option is the equivalent of solving one of the alternative problems de-

scribed in Chapter 2, i.e.,

min||u|| subject to max Ju+V(ß) > 1. (4.27)

If the detection signal must be kept off of the control channels, then the other problem

described in Chapter 2 is solved, i.e.,

min||u;i|| subject to max Jw(ß) > 1 and w2 — u. (4.28)

where the dynamics are described by

x\ = AtXi + BiV + EiU + MiHi. (4.29)

and where w = [wi,w2] = [v,v]. Obviously, if the nulling option is chosen, the test

period should be kept as short as possible to avoid aircraft control difficulties. The

results below reflect the nulling option.

SOCS has no difficulty solving this problem. The FORTRAN code generated is

lengthy, but optimized coding methods can minimize the impact of this effect. In

fact, standard routines for translating matrix multiplication into FORTRAN loops

Chapter 4. Examples and Analysis of Results 120

can reduce the effect of the added dimensionality to virtually zero. Figures 4.21 and

4.22 give v, ye(t), and ae(t) for this problem on the interval [0,1].

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.21: Components oiv for Example 4.12: tf = 1

I &2 0.3 0.A 0.5 0.6 07 0.B 0.9 1

Figure 4.22: Components of y£(t) and ae(t) for Example 4.12: e = 0.7

These results demonstrate that the FDMI algorithm is capable of handling higher

dimensional problems and is limited only by the multi-model assumptions inherent

in the approach.

Chapter 4. Examples and Analysis of Results 121

4.7 Multiple Fault Model Examples

To conclude the analysis of examples, we examine two systems, each of which has a

nominal model and two fault models. One of these systems is one-dimensional and

the other is two-dimensional.

Recall from Chapter 2 the two approaches described to handle multiple fault

model problems. The first method is sequential in nature, in which the test period is

divided into equal segments, and problems involving each pair of models are solved on

the shorter intervals. It was suggested that this method would produce a v that was

larger than necessary. The second method should produce a v of much lower energy.

It is simultaneous in nature, in which the pairwise problems are solved independently

on the full interval for a common v.

Our last two examples demonstrate the ability of the FDMI algorithm to handle

multiple fault model systems as well as shed light on the conjecture of Chapter 2

about the energy of the v resulting from each method.

4.7.1 One-Dimensional Example

The simplest multiple fault model problem is given in Example 4.13.

EXAMPLE 4.13. [Change of eigenvalue, stable/stable/stable] This problem, has a

stable nominal model and two stähle fault models. Eigenvalues are —1, —3, and —0.2,

Chapter 4. Examples and Analysis of Results 122

respectively.

model 0: x'0 = —x0 + v + [i2 (4.30a)

y = XQ + U.X (4.30b)

model 1: x\ = -Sxi+v + fa (4.30c)

y = zi+/x3 (4.30d)

model 2: x'2 = -0.2z2 + v + \i% (4.30e)

y = Z2 + M5- (4.30f)

Figure 4.23 gives v for the two methods. On the left is the comparison of v using

the sequential method on [0,1], [1,2], and [2,3] to that of the simultaneous method

on [0,3]. The plots are in the same scale, and it is obvious that the simultaneous

method produces a v of much lower energy. On the right side of Figure 4.23 is a

comparison of v from the simultaneous method to each v obtained by solving the

pairwise problems completely independently on the entire interval [0,3]. For this

problem, the simultaneous v is the same as the highest energy v from the independent

pairwise problems. Thus, we can handle multiple fault models for the same energy

and with the same v wave form as required for one fault model. Often, however, the

simultaneous v will require more energy and will not be the same shape as the any

of the three independent v. However, the similar shapes of the v for this problem

suggest that if feasibility issues arise in the simultaneous method, the v from the

pairwise problems, or multiples thereof, can be applied as an accurate initial guess

for the combined problem.

Figure 4.24 gives the y£(t) and a£(t) for the sequential method, and Figure 4.25

gives the same for the simultaneous method. The only immediate advantages which

can be gleaned for the simultaneous method from these plots is the continuity of y and

Chapter 4. Examples and Analysis of Results 123

a over the entire interval, and the lack of a requirement to maintain three different test

functions. Since y and a must be stored, if a number of comparisons between multi-

dimensional models must be made, the reduced number of test functions demonstrates

better use of possibly limited memory resources.

Figure 4.23: v for Example 4.13 sequential vs. simultaneous (left),
full interval two-model vs. simultaneous (right)

Figure 4.24: ye(t) and ae(t) for Example 4.13: sequential solve

Chapter 4. Examples and Analysis of Results 124

0.5 1 1.5 2 2.5

Figure 4.25: ye(t) and ae(t) for Example 4.13: simultaneous solve

4.7.2 Two-Dimensional Example

Our final example exhibits several interesting stability properties.

EXAMPLE 4.14. [Change of eigenvalues, stable/stable/unstable] This problem has

a stable nominal model, one stable fault model, and one unstable fault model. Nominal

model eigenvalues are —2 ± i. Fault model 1 eigenvalues are —9.7016 and —3.2984.

Fault model 2 eigenvalues are \ ± 1.3229z.

model 0: x'u

-1 2

-1 -3
x0 +

y = l l XQ +

model 1: x\ =
-10 2

-1 -3

1

0

1 0 0

1

v +

Ho

Xi +

model 2: x'0

V =

1 1

1 2

-1 0

1 1

X\ +

x2 +

x2 +

0

1 0 0

1

0

1 0 0

v +

0 0 1

0 1 0

0 0 1

0 1 0

Mo

Ml

Ml

v +
0 0 1

0 1 0
M2

M2-

(4.31a)

(4.31b)

(4.31c)

(4.31d)

(4.31e)

(4.31f)

Chapter 4. Examples and Analysis of Results 125

Figure 4.26 gives v for the two methods. On the left is the comparison of v

using the sequential method to that of the simultaneous method. The plot oscillating

minimally around the horizontal axis is that of the simultaneous method. Again it

is obvious that the simultaneous method produces a v of much lower energy. On the

right side of Figure 4.23 is a comparison of v from the simultaneous method (dotted

line) to the v obtained by solving the pairwise problems completely independently

on the entire interval (solid lines). The simultaneous v is not the same as any other

v from the independent pairwise problems. In fact, the simultaneous v contains an

extra extrema on the interval. Even so, the plot shows that we can handle multiple

fault models with only a bit more energy than required for a single fault model.

Figure 4.27 gives the ye(t) and ae(t) for the sequential method, and Figure 4.28

gives the same for the simultaneous method. Again, the only advantages appear to

be the continuity of y and o, and simplicity of the test function for the simultaneous

method.

4.8 Conclusion

The purpose of this chapter was to give examples and analysis of the practical aspects

of the FDMI algorithm. After restating the problem and one form of the algorithm,

we examined the simplest problems in one dimension to ascertain shapes and ener-

gies of the minimum energy detection signals for those problems. Comparisons of one

problem in four different formulations using different initial guesses showed that each

arrived at the same optimal solution, supporting uniqueness assertions made in Chap-

ter 3. We then looked at more complex examples in two dimensions to demonstrate

how the basic shapes and energies of v evolve. An unobservable system was tested,

and despite a known lack of uniqueness of the closest points in the output sets, the

Chapter 4. Examples and Analysis of Results 126

Figure 4.26: v for Example 4.14 sequential vs. simultaneous (left),
full interval two-model vs. simultaneous (right)

Figure 4.27: yt(t) and ae(t) for Example 4.14: sequential

Chapter 4. Examples and Analysis of Results 127

■ •■ Ovs1
--0V52

■-■ 1vs2

0.5 1

i:

f
i

i

\
\

r

''■'/' \ v\

11

ii
; i

v \ / ■' / ■ \
\ i

11

"\\ . / / 11 ■
i

\. > i
i

■

■■■■ 0vs1

- - 0 vs 2

, , (■-■ 1»S2

Figure 4.28: yt(t) and ac(t) for Example 4.14: simultaneous

FDMI algorithm and SOCS provided a solution. An industrial strength example in

three dimensions proved that the algorithm and SOCS were capable and efficient even

in the higher dimensions. We ended with examples of the extension of the algorithm

to problems with multiple fault models.

Throughout the examples we saw varying degrees of sensitivity to the value of e.

It was demonstrated that some care must be taken in choosing the value of e used in

the algorithm. However, it was also shown that high quality results can be reliably

computed with the proper selection of e. In addition, we saw some difficulties arising

due to very small objective function values. A method of automatic conditioning

on objective functions should be developed to overcome these difficulties. Finally,

systems for which a feasible initial guess is difficult to obtain due to initial mesh

size considerations may require pre-conditioning to facilitate making the initial guess.

This problem may also arise due to the fact that — v and v are both optimal solutions.

An initial guess of v = 0 may be suitable for some problems, but it is a saddle point,

Chapter 4. Examples and Analysis of Results 128

and using it could slow down convergence of the SOCS program. Despite these issues,

the analysis in this chapter demonstrates the efficiency and practicality of the FDMI

algorithm.

Chapter 5

Future Work and Conclusions

5.1 Future Work

Up to this point, we have exercised the FDMI algorithm mostly within the confines of

certain assumptions about the structure of the problem to be solved. For example, we

have assumed a short test period length, no a priori knowledge of initial conditions on

the state, and strict linearity in the dynamics. While we have extended the algorithm

to problems with multiple fault models, with a pre-existing known control, and with

alternative cost functions, we have not mentioned other variations that may help to

extend the algorithm to an even larger set of problems. Some variations we have

mentioned, but have left to future research. The unreduced model, mentioned in

Chapter 2, would be of direct benefit to several types of problems excluded from our

study. Also, unobservable systems, theoretically excluded from the FDMI algorithm,

may in fact be treatable. While we discussed the possibility of applying the FDMI

algorithm to such systems, and even worked an example for which the algorithm

provided a solution, the bulk of the work remains. In particular, the most promising

aspect, that of projecting each model onto a subspace to eliminate the parallel sides,

is left undone.

129

Chapter 5. Future Work and Conclusions 130

This chapter will introduce and discuss several other interesting and applicable

variations to the basic problem and the impact they have on the FDMI algorithm.

Topics mentioned below are: the half-infinite interval, linear time varying problems,

nonlinear problems, independent noise channels, and sensitivity issues. We mention

these topics for the purpose of highlighting the work still remaining in this area, and

thus will not attempt a complete and detailed look at each one. Conclusions follow

the last topic and complete our discussion.

5.1.1 The Half-Infinite Interval

We mentioned in Chapter 1 that Nikoukhah et d. [29] was the inspiration for the

work contained in this thesis. In that paper, theory is developed for the limiting

shape and energy of v on the interval [0, oo). While in practice the use of the half-

infinite detection horizon is not always possible due to unstable fault models or cost

considerations, theoretical development of the limiting case can aid in approximating

detection signals and separability indices on long intervals. As this thesis is dedicated

more to practical applications of online detection, we leave the development of the

limiting case to future research.

To aid in that research, we note that Riccati matrix differential equations provide

convenient properties on, and useful insights into the half-infinite interval. Finite in-

terval Riccati differential equations become algebraic equations as tf goes to infinity.

In fact, a large part of the Riccati form of the FDMI algorithm should be directly

extendable to the half-infinite interval. The translation of other parts and confirma-

tion of the results remain to be accomplished. In particular, questions remain about

the multiple fault model case, and whether the FDMI algorithm will be capable of

addressing those problems on the half-infinite interval.

Chapter 5. Future Work and Conclusions 131

5.1.2 Linear Time Varying Models

The linear time invariant problem addressed thus far is a special case of a larger set of

control problems, the linear time varying (LTV) problem. In the LTV case, linearity

still exists, but the coefficient matrices A, B, C, M, and N depend on time. Thus

the multi-model system model 4.1 becomes

x\ = AiMxi + Bifäv + MiWfii (5.1a)

y = Ci{t)xi + Ni{t)iJLi (5.1b)

for i = 0,...,m. Luckily, convexity still exists due to linearity, so the same visu-

alizations and characterizations of system dynamics and outputs can be made. In

fact, even much of the Riccati theory mentioned in the previous section holds. Un-

fortunately, the infinite interval algebraic Riccati equation does not hold, so further

research not based on our Riccati approach will be required for that case.

We should also note that the system reductions described in Chapter 2 will now

involve time varying matrices, so software must be chosen which can handle the new

complexities involved. In addition, technical difficulties arise due to time-varying

coordinate changes, x — Q(t)w. Q' will enter the equations, and differentiation of

computed quantities is highly undesirable. Also, even if Ni is full row rank there still

may not exist a submatrix which is invertible for all t. These difficulties highlight

the need to develop a theory and algorithms that work on systems in their original,

unreduced form. It is apparent that much adaptation of theory, further development

of algorithms, and tests of new examples are required before the LTV subject can be

considered closed.

Chapter 5. Future Work and Conclusions 132

5.1.3 Nonlinear Models

Another larger set of control problems of which the LTI problem is a special case is

the nonlinear problem. The semi-explicit nonlinear control problem can be written

as

x' = f[x(t),u(t),t] (5.2a)

y = g[x(t),u{t),t}. (5.2b)

While the FDMI algorithm should, in principle, be extendable to these types of

systems, technical and computational difficulties arise due to the loss of convexity.

As a result, solutions are only locally optimal, if they can be shown to exist at all,

and the implementation of the algorithm in optimization codes becomes subject to

significant initial guess and convergence issues.

Of the general class of nonlinear control problems, three types show promise for

more immediate application of the FDMI algorithm. These are: small bounded non-

linearities, nonlinearities in only the control, and nonlinearities involving coefficient

matrices dependent on v. We discuss each of them in turn.

Small Nonlinearities

Small norm-bounded nonlinearities do not present undue difficulties to the FDMI

algorithm. Suppose that the models and noise bounds are of the form

x\ = AiXi + giix^tf + BiV + Mißi (5.3a)

y = dxi + Ni/ii (5.3b)

IHI2 < I- (5-3c)

Chapter 5. Future Work and Conclusions 133

If 11^(^1,^)11 < e, then we can address (5.3) by considering

x'i = AiXi + BiV + Mipi (5.4a)

y = dxi + N&i (5.4b)

ll/Iill2 < 1 + eHf (5.4c)

where Ji = [M , M; = [/ M;], and N{ = [0 ^]. After rescaling, (5.4) is in the form w
required by the FDMI algorithm. This formulation will produce an answer which over

estimates the required ||u||. Many robust algorithms can handle small nonlinearities

in this way. Tests of the efficiency of the v produced via this formulation are left to

future research.

Nonlinear in the Control

Another way nonlinearities may enter the problem is through the control. Recall from

Chapters 2 and 3 that [30] begins with our problem and assumptions, but goes in

quite a different direction to develop the detection signal and separating hyperplane.

While that approach seems more direct and satisfying, it is not capable of handling

nonlinear controls. The FDMI algorithm gains a distinct advantage in this aspect

because it can solve problems with nonlinearities in the control.

Suppose that the nonlinearly controlled models are

x\ = AiXi + Big(v) + MM, (5.5a)

y = dxi + Nifii (5.5b)

where v may be a steering angle, for example, and thus would enter the equations as

cosu. The 2nR form of the optimization problem is now

min ||u|| such that Jg^v)(ß) > 1 for some ß G [0,1] (5.6)

Chapter 5. Future Work and Conclusions 134

which, after the reductions described in Chapter 2, becomes a nonlinear boundary

value problem. While SOCS has excellent nonlinear capabilities, the nature of g(v)

will have a lot to say about the solution to the BVP. If the function is not one to one,

as cosü is not, then we should expect multiple local minima and saddle points. The

rate of convergence to, and the quality of the solution then become a function of the

initial guess. Development of an efficient initial guess algorithm becomes paramount,

and is a ripe topic for future research.

Coefficient Matrices Dependent on the Detection Signal

An interesting class of nonlinear problems involves system coefficient matrices which

can be affected by the detection signal. The system models for this class are

x'i = Aiitfxi + BiWv + MiWin (5.7a)

y = CiWxi + NiWiM. (5.7b)

For this problem, for a given v the output sets, A^v), are still convex. However,

they vary nonlinearly with v. Given that one has a proper detection signal, the

FDMI algorithm can still be used to solve for the normal to the separating hyperplane.

Obtaining the minimum energy proper detection signal may not be as straightforward.

Since the minimization of \\v\\ occurs on the outside of all other operations, the

algorithm may work as coded in SOCS. On the other hand, this type of problem is

similar to the LTV problem, but with an added nonlinear structure. The difficulties

described for that problem are applicable here as well. Reductions involving nonlinear

u-varying matrices will undoubtedly be more complex than those involving linear

time varying matrices, and will require algorithms and software that can handle their

complexities. In addition, if a ^-varying coordinate change is required, then v' may

enter the equations. As in the LTV case, one should avoid differentiating a computed

quantity. Each of these issues provides a strong argument for developing algorithms

Chapter 5. Future Work and Conclusions 135

based on the unreduced problem. As in the LTV problem, adapting the algorithm,

confirming the theory, and testing examples remains as future research.

5.1.4 Independent Noise Bounds

Systems may have an added complexity in that noise channels arc independently

bounded. Thus, the expression for the bound on the noise changes from

llrf<l. « = 0,1 (5.8)

to

W/iijW2 <1, z = 0,1, j = l,...n{ (5.9)

where j is the channel and n; is the number of noise channels in model i. This addi-

tional complexity has a far reaching impact on the problem. First, (5.9) is equivalent

to WfAiWlo < 1, and IIAüHOO is not a strictly convex norm. Also, the construction of

the auxiliary cost function, «/„(/?), must now accomodate n0 + ny terms. Finally, the

translation of the cost function into those terms necessary for the application of op-

timal control theory may or may not be possible. Much work remains undone in this

area, including the possible requirement of all new theory.

5.1.5 Sensitivity Issues

While we have talked about the sensitivity of the separating hyperplane to the value

of e, we have ignored other sensitivity issues. One is often interested in the sensitivity

of the solution to perturbations of the system coefficient matrices Ai, Bi, and so on.

If coefficients are slightly inaccurate, then we would like to say that the test function

from the FDMI algorithm is still usable, but subject to some error. A sensitivity

study identifies bounds on the error due to coefficient perturbations. It should be

Chapter 5. Future Work and Conclusions 136

noted that, as in the small nonlinearities case discussed above, the algorithm can be

modified to be robust to bounded perturbations of the system coefficients via the

addition of more noise terms resulting in a higher energy than necessary detection

signal. In that light, the development of some results in the sensitivity issue will

closely follow those of the small nonlinearities problem. As an alternative, one could

consider system matrices A{ + AAt, B{ + ABh and so on, where AA{ and A£; are

small. System models for this approach are straightforward to write down, but will

involve many more parameters than the unperturbed models. The optimal solution

will depend on the perturbations, providing the sensitivity information one seeks, but

solving the problem will be computationally expensive. Regardless of the approach

taken, much more work on sensitivity issues remains.

5.2 Conclusions

Our goals for this thesis were to apply the multi-model approach to fault detection and

model identification in linear descriptor systems, modeling noise as bounded energy

signals, proving that this combination is a valid and efficient tool for these types of

problems, and to develop an algorithm that demonstrates perfect fault detection and

model identification. As we saw in Chapter 1, the combination of the multi-model

approach and the bounded energy noise model is under-explored, in that very little

existing literature reports their combined use. Most work in the multi-model approach

uses statistical noise models which, while theoretically attractive, do not provide the

computational friendliness to optimization software that the bounded energy noise

models do. The remaining theory involves the single-model approach, utilizing either

feedback or observer design for imperfect fault detection and model identification.

After laying the groundwork for the types of systems to be addressed and the

numerical methods to be applied to those systems in Chapter 1, we developed the

Chapter 5. Future Work and Conclusions 137

theory for the first half of the problem, fault detection, in Chapter 2. There, after

defining the minimum energy detection signal, we constructed the auxiliary cost func-

tion. We then translated the problem into a nested optimization problem suitable for

implementation in SOCS, solving for the necessary conditions for a minimum of the

inner problem, and then using those conditions as constraints on the outer problem.

We presented four forms of the MEDS algorithm, two of which apply matrix Riccati

differential equation theory, which is well-suited to the limiting half-infinite interval

case. After stating the algorithm, and the software in which we implemented it, we

addressed several variations of the problem for which the algorithm is well suited,

most notably the multiple fault model case, with which prior work in this area is not

compatible.

Next we turned to the second half of the problem, model identification. Given an

output, our detection signal ensured that only one model could have produced it. In

Chapter 3 we developed the theory for the separating hyperplanc for the output sets.

We reduced the input of the noise to the system in order to translate the problem into

an optimization problem, the solution of which gave an approximation to the normal

of the separating hyperplane. The equation of the normal was implemented as a

test function in the MI algorithm. After stating the algorithm, we again addressed

variations of the problem, and showed that the second half of the algorithm is as

equally suited to those variations as the first half.

Chapter 4 was dedicated to the presentation and analysis of various types of ex-

amples. We applied our implementation of the FDMI algorithm to one-, two-, and

three-dimensional examples, demonstrating comparable performance on all. A mul-

tiple fault model case was examined, and the capability of the algorithm in this area

was shown to be as expected. In fact, the only unexpected result came from an exam-

ple that was constructed to force the SOCS version of the algorithm to fail. Instead

of failing, the algorithm worked, demonstrating unanticipated robustness. Despite

Chapter 5. Future Work and Conclusions 138

this success, some indications of difficulty were uncovered. Initial guess construction,

starting mesh size, objective function scaling, and the selection of e each showed signs

of becoming factors in certain problems but not in others. These issues should be

resolved before any real-world application of the algorithm.

Finally, in the present chapter, we introduced several extensions of the FDMI

algorithm, describing the basics of each, but leaving the bulk of the work to future

research. The tools developed in this thesis show much promise for numerically solv-

ing the fault detection and model identification problem in linear descriptor systems.

Where previously there existed few multi-model methods for dealing with short deci-

sion horizons, this work provides a new approach for online fault detection and model

identification.

List of References

[1] Athens, M., and P. L. Falb, Optimal Control, McGraw-Hill, 1966.

[2] Bennett, S. M., R. J. Patton, S. Daley, and D. A. Newton, Model Based Inter-

mittent Fault Tolerance in an Induction Motor Drive, Proceedings of the IMACS

Multiconference CESA '96, in the Symposium on Control, Optimization and Su-

pervision, vol. 1, July 1996, pp. 678-683.

[3] Betts, J. T., M. J. Carter, and W. P. Huffman, Software for Nonlinear Optimiza-

tion, Mathematics and Engineering Analysis, Library Report MEA-LR-083 Rl,

Boeing Information and Support Services, The Boeing Company, PO Box 3707,

Seattle, WA 98124-2207, June 1997.

[4] Betts, J. T., and W. P. Huffman, Sparse Optimal Control Software, Mathematics

and Engineering Analysis, Library Report MEA-LR-085, Boeing Information and

Support Services, The Boeing Company, PO Box 3707, Seattle, WA 98124-2207,

July 1997.

[5] Brenan, K. E., S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, SIAM, 1996.

[6] Brogan, W. L., Modern Control Theory, Prentice-Hall, 1991.

139

References 140

[7] Campbell, S. L., A Survey of Time Varying and Nonlinear Descriptor Control

Systems, Proceedings of the Symposium on Implicit and Nonlinear Systems, 1992,

pp. 356-363.

[8] Campbell, S. L., High-Index Differential Algebraic Equations, Mechanical Struc-

tures and Machines, vol. 23, no. 2, 1995, pp. 199-222.

[9] Campbell, S. L., Linearization of DAEs along trajectories, Z. angew Mathemat-

ical Physics, vol. 46, 1995, pp. 70-84.

[10] Campbell, S. L., and E. Griepentrog, Solvability of General Differential Algebraic

Equations, SIAM Journal of Scientific Computing, vol. 16, no. 2, March 1995,

pp. 257-270.

[11] Campbell, S. L., K. Horton, R. Nikoukhah, and F. Delebecque, Rapid Model

Selection and the Separability Index, Proceedings of the 4th IFAC Symposium

on Fault Detection, Supervision and Safety for Technical Processes (SAFEPRO-

CESS 2000), June 2000, pp. 1187-1192.

[12] Campbell, S. L., K. Horton, R. Nikoukhah, and F. Delebecque, Auxiliary signal

design for rapid multi-model identification using optimization, preprint.

[13] Campbell, S. L., and E. Moore, Constraint preserving integrators for general

nonlinear higher index DAEs, Numerical Mathematics, vol. 69, 1995, pp. 383-

399.

[14] Campbell, S. L., and L. R. Petzold, Canonical Forms and Solvable Singular Sys-

tems of Differential Equations, SIAM Journal of Algebraic Discretization Meth-

ods, vol. 4, no. 4, December 1983, pp. 517-521.

[15] Chen, R. H., and J. L. Speyer, Residual-Sensitive Fault Detection Filter, preprint,

January 1999.

References 141

[16] Chowdhury, F. N., and J. L. Aravena, A Modular Methodology for Fast Fault

Detection and Classification in Power Systems, IEEE Transactions on Control

Systems Technology, vol. 6, no. 5, September 1998, pp. 623-634.

[17] Chung, W. H., and J. L. Speyer, A Game Theoretic Fault Detection Filter, IEEE

Transactions on Automatic Control, vol. 43, no. 2, February 1998, pp. 143-161.

[18] Heal, K. M., M. L. Hansen, and K. M. Packard, Maple V, Release 5 Learning

Guide, Waterloo Maple Inc, Ontario, Canada, 1998.

[19] Jonckheere, E. A., and G.-R. Yu, Propulsion Control of Crippled Aircraft by H^

Model Matching, IEEE Transactions on Control Systems Technology, vol. 7, no.

2, March 1999, pp. 142-159.

[20] Kaiman, R. E., et al., Fundamental Study of Adaptive Control Systems, Wright-

Patterson Air Force Base Tech. Rept. ASD-TR-61-27, vol. 1, April, 1962.

[21] Keller, J. Y., L. Summerer, and M. Darouach, Robust Failure Detection from a

Multi-Model Approach, Proceedings of the IMACS Multiconference CESA '96,

in the Symposium on Control. Optimization and Supervision, vol. 1, July 1996,

pp. 384-388.

[22] Kerestecioglu, F., Change Detection and Input Design in Dynamical Systems,

Research Studies Press, Taunton, U.K., 1993.

[23] Kerestecioglu, F., and M. B. Zarrop, Input design for detection of abrupt changes

in dynamical systems, International Journal of Control, vol. 59, 1994, pp. 1063-

1084.

[24] Koenig, D., S. Nowakowski, and T. Cecchin, A Comparative Study of Unknown

References 142

Input Observers Design Methods Applied for Fault Detection, Isolation, and Cor-

rection, Proceedings of the IMACS Multiconference CESA '96, in the Symposium

on Control, Optimization and Supervision, vol. 1, July 1996, pp. 665-671.

[25] Luenberger, D. G., Optimization by Vector Space Methods, John Wiley and Sons,

1969.

[26] The MathWorks, Inc, Using MATLAB Version 5, 1998.

[27] Nagpal, K.M., and P. P. Khargonekar, Filtering and Smoothing in an H°° Set-

ting, IEEE Transactions on Automatic Control, vol. 36, no. 2, February 1991.

pp. 152-166.

[28] Nikoukhah, R., Guaranteed Active Failure Detection and Isolation for Linear

Dynamical Systems, Automatica, vol. 34, no. 11, 1998, pp. 1345-1358.

[29] Nikoukhah, R., S. L. Campbell, and F. Delebecque, Detection signal design for

failure detection: a robust approach, International Journal of Adaptive Control

Signal Processes 2000, vol. 14, pp. 701-724.

[30] Nikoukhah, R., S. L. Campbell, Kirk Horton, and F. Delebecque, Auxiliary signal

design for robust multi-model identification, IEEE Transactions on Automatic

Control, accepted subject to final revision.

[31] Nikoukhah, R., F. Delebecque, S. L. Campbell, and K. Horton, Multi-model

Identification and the Separability Index, Proceedings of the 14th International

Symposium of the Mathematical Theory of Networks and Systems 2000, June

2000, CDROM.

[32] Nuninger, W., F. Kratz, and J. Ragot, Observers and Redundancy Equations

References 143

Generation for Systems with Unknown Inputs, Proceedings of the IMACS Mul-

ticonference CESA '96, in the Symposium on Control, Optimization and Super-

vision, vol. 1, July 1996, pp. 672-677.

[33] Riggins, R. N., and W. B. Ribbens, Designed Inputs for Detection and Isolation

of Failures in the State Transition Matrices of Dynamic Systems, IEEE Trans-

actions on Control Systems Technology, vol. 5, no. 2, March 1997, pp. 149-161.

[34] Rockafellar, R. T., Convex Analysis, Princeton University Press, 1970.

[35] Sauter, D., H. Noura, F. Hamelin, and D. Theilliol, Parity Space Approach for

Fault Diagnosis in Descriptor Systems, Proceedings of the IMACS Multiconfer-

ence CESA '96, in the Symposium on Control, Optimization and Supervision,

vol. 1, July 1996, pp. 380-383.

[36] Tadmor, G., Worst-Case Design in the Time Domain: The Maximum Principle

and the Standard H^ Problem, Mathematical Control Signals Systems, vol. 3,

1990, pp. 301-324.

[37] Uosaki, K., I. Tanaka, and H. Sugiyama, Optimal input design for autoregressive

model discrimination with constrained output variance, IEEE Transactions on

Automatic Control, AC-29, 1984, pp. 348-350.

[38] Vincent, T. L., and W. J. Grantham, Nonlinear and Optimal Control Systems,

John Wiley and Sons, 1997.

[39] Yang, J.-S., Mixed H2 Compensator Design for an Aircraft Control Problem,

Proceedings of the 38th Conference on Decision and Control, December 1999,

pp. 1964-1969.

[40] Youssouf, A., and M. Kinnaert, Residual Generation for Singular Systems using

Parity Relations, Proceedings of the IMACS Multiconference CESA '96, in the

References 144

Symposium on Control, Optimization and Supervision, vol. 1, July 1996, pp.

533-538.

[41] Zhang, X. J., Auxiliary Signal Design in Fault Detection and Diagnosis, Springer,

Heidelberg, 1989.

[42] Zhang, Y., and J. Jiang, An Interacting Multiple-Model Based Fault Detection,

Diagnosis and Fault-Tolerant Control Approach, Proceedings of the 38th Confer-

ence on Decision and Control, December 1999, pp. 3593-3598.

[43] Zhang, Y., and J. Jiang, Design of Integrated Fault Detection, Diagnosis and

Reconfigurable Control Systems, Proceedings of the 38th Conference on Decision

and Control, December 1999, pp. 3587-3592.

Appendix A

Software Drivers

Several pieces of commercial software can be combined to implement the FDMI algo-

rithm presented in this thesis. Model reduction is efficiently accomplished in MAT-

LAB, by The MathWorks, Inc. [26]. FORTRAN code generation of the reduced

system model is done in MAPLE, by Waterloo Maple, Inc. [18]. Optimization is car-

ried out in SOCS, by Boeing [3, 4] for both the minimum energy detection signal and

the normal to the separating hyperplane. MATLAB is used to analyze the output

from SOCS and create plots. Sample driver files for each phase of this process are

included below.

A.l Model Reduction

The transformation of the original system to the reduced model discussed in Chapter

2 is accomplished by the following MATLAB m-file.

*/,reduced2d.m
'/.current parameters for: common mode example (examlO)

'/.system matrices
A0=[1 0;

0 2];
Al=[l 0;

145

Appendix A. Software Drivers 146

0 3];
B0=[2 1;

1 2];
Bl=[2 1;

1 2];
C0=[1 0;

0 1];
Cl=[l 0;

0 1];
M0=[0 0 0 1;

0 0 10];
M1=[0 0 0 1;

0 0 10];
N0=[0 1 0 0;

10 0 0];
N1=[0 10 0;

10 0 0];

7,may need to do constant orthogonal change of coords on the noise

°/,do it via a QR decomp on N_i"T to get [Nb_i 0] ,

°/,where Nb_i is invertible, also gives [Mb_i Mt_i]

[Q0,R0]=qr(N0O

[Ql,Rl]=qr(Nl>)

pause

'/„now N_i"T = Q_i * R_i, so N_i = R_i"T * Q_i~T

"/„and Q_i"T is an orthogonal matrix

"/.absorb Q_i"T into the noise vector nu_i to get new noise vector

"/.and Nb_i becomes the invertible part of R_i~T

"/.may need to fix

R0=-R0;

R1=-R1;

Q0(1,1)=-Q0(1,1)
Q0(2,2)=-Q0(2,2)

qi(i,i)=-Qi(i,i)
qi(2)2)=-Ql(2,2)

signs in Q_i and/or R_i

'/.break down into Mb_i,

LmN0,nN0]=size(N0);

[mNl,nNl]=size(Nl);

mnN0=min(mN0,nN0);

Mt_i, Nb_i, and Nt_i (zeros)

Appendix A. Software Drivers 147

mnN1=min(mN1,nN1)

mxNO=max(mNO,nNO)

mxN1=max(mN1,nN1)

NOn=RO';

Nln=Rl';
NbO=NOn(1:mnNO,1:mnNO)

Nbl=Nln(l:mnNl,1:mnNl)

NtO=NOn(:,mnNO+l:mxNO)

Ntl=Nln(:,mnNi+l:mxNl)

MOn=MO*QO';

Mln=Ml*Ql';

MbO=MOn(

Mbl=Mln(

MtO=MOn(

Mtl=Mln(

,l:mnNO);

,l:mnNl);

,mnNO+l:mxNO)

,mnNl+l:mxNl)

'/.just need the size of this

'/.and this

"/.create reduced model system matrices

[mA0,nA0]=size(A0);

[mAl,nAl]=size(Al);

[mMtO,nMtO]=size(MtO);

[mMtl,nMtl]=size(Mtl);

[mNb,nNb]=size(Nbl);

[mNtO,nNtO]=size(NtO);

[mNtl,nNtl]=size(Ntl);

A=[AO-MbO*inv(NbO)*CO MbO*inv(NbO)*Cl; zeros(mAl,nA0) Al]
M=[MtO MbO*inv(NbO)*Nbl zeros(mMtO,nMtl); zeros(mMtl,nMtO) Mbl Mtl]
B=[B0;B1]
C=[inv(NbO)*CO -inv(NbO)*Cl];
N=inv(NbO)*[zeros(mNb.nNtO) Nbl zeros(mNb,nNt1)];

7oQ and H without beta
Qnb=2*C'*C
Hnb=-4*C'*N

'/.size of upper left block of R

ulident=nNtO

7.Nbl'NbO'"-lNbO"-lNbl for the center block of R

Nbl
Nmess=Nbl,*inv(NbO')*inv(NbO)*Nbl

Appendix A. Software Drivers 148

'/.size of lower right block of R

lrident=nNtl

'/end of routine

Outputs from this routine are used as follows:

• sizes of reduced model system matrices are inputted into MAPLE,

• parameters of the R matrix are inputted into MAPLE,

• parameters of the reduced model system matrices are inputted into SOCS.

A.2 Fortran Code Generation

The following MAPLE routine takes the sizes of reduced model system matrices and

the parameters of the R matrix and creates FORTRAN code for pasting into the

SOCS FORTRAN driver.

°/reduced2d.mws
> restart;

> with(linalg):

'/sizes of reduced system matrices
> A:=matrix(4,4)
> B:=matrix(4,l)
> M:=matrix(4,5)
> Q:=matrix(4,4)
> H:=matrix(4,5)
> Nmess:=matrix(l,l);

"/structure of the R matrix
> R:=matrix(5,5,[2*P[i],0,0,0,0,0,2*P[l],0,0,0,0,0,2*(l-P[l])+
2*P[l]*Nmess[l,l],0,0,0,0,0,2*(1-P[1]),0,0,0,0,0,2*(1-P[1])]);

7,S0CS needs all variables in a single vector
> Z:=vector(15);
> x:=vector(4, [Z[l] ,Z[2] ,Z[3] ,Z[4]]) ;
> lambda:=vector(4,[Z[5],Z[6],Z[7],Z[8]]);
> nu:=vector(5, [Z[10] ,Z[11] ,Z[12] ,Z[13] ,Z[14]]) ;

Appendix A. Software Drivers 149

> v:=vector(l,[Z[15]]);

'/.create constraint equations
> Fl:=matadd(matadd(multiply(A,x).multiply(B,v)),multiply(M,nu))

> F2:=matadd(matadd(multiply(-P[l]*Q,x).multiply(-P[l]*H,nu)/2),

multiply(transpose(-A).lambda));

> F3:=(multiply(multiply(transpose(x),P[1]*Q),x)

+multiply(multiply(transpose(x),P[1]*H),nu)

+multiply(multiply(transpose(nu),R),nu))/2;

> F4:=matadd(matadd(multiply(R,nu),

multiply(transpose(P[1]*H),x)/2).multiply(transpose(M).lambda));

'/.translate constraint equations into FORTRAN code

> fortran(Fl)

> fortran(F2)

> fortran(F3)

> fortran(F4)

'/.end of routine

A.3 Optimization via the FDMI Algorithm

The following SOCS driver takes the FORTRAN code output by the above MAPLE

routine, as well as the parameters of the reduced model system matrices from the

above MATLAB routine, to accomplish both halves of the FDMI algorithm.

C Main driver: 2dex4m.f

PROGRAM MID42D

C Generic 2D FDMI problem on [TO.TF] in formulation 2nR

C using min distance between convex set theory

C Need to set problem parameters in seven places:

C a few lines down from here, and in 0PT2IN, MID2IN (TO.TF only)

C near end of MAIN (output file names in open calls)

C in 0PT2DE (all coordinate changed parameters)

C in MID2DE (all original problem parameters plus epsilon (EPSIL))

C in function YBAR(T) (coordinate changed parameters Cl and NB1)

Appendix A. Software Drivers 150

C current parameters are for: multimod2d_12

INTEGER I,NIW,MAXPHS,NW,MAXCS,MAXDP

PARAMETER (NIW = 10000000,MAXPHS = 5,NW = 10000000,MAXCS=100000)

PARAMETER (MAXDP = 1000)

INTEGER IW(NIW),IPCPH(MAXPHS+1),IPDPH(MAXPHS+1).NEEDED,IER

DOUBLE PRECISION TO,TF,T,W(NW),CSTAT(MAXCS),DPARM(MAXDP),YBAR

PARAMETER (T0=0.D0,TF=1.DO)

C OCSEVL will be called during second SOCS run (MI) to extract

C output from first SOCS run (MEDS) needed in MI optimization, so need

C to save some of the parameters from first SOCS run that are args

C to OCSEVL to new variable names as defined below

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1)

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW)

C Also need them to be common because SOCS will not pass them

C to the functions that use them

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2

INTEGER IPHASE,NDP,IOUNIT,IOFLAG,NPTAUX,MXSTAT,NDYN

PARAMETER (MXSTAT = 20)
DOUBLE PRECISION STSKL(0:MXSTAT),DTAUX

EXTERNAL 0PT2IN,MID2IN,DUMYIG,0PT2DE,MID2DE

EXTERNAL DUMYPF,DUMYPR

C Output verbosity
CC CALL HHS0CS('IPGRD=O')

C default=10
C CALL HHS0CS('IPFSFD=O') default=0

CC CALL HHSOCS('IPNLP=0')

C default=10
C CALL HHS0CS('IP0DE=O') default=0

C CALL HHSNLP('IOFLAG=0')

C default=10
CALL HHSNLP('MAXNFE=50000')

CALL HHSNLP('NITMAX=1000')

Appendix A. Software Drivers 151

CALL HHSNLP('KTOPTN=SMALL')

CALL HHSNLP('ALGOPT=FM')

CALL HHS0CS('MIT0DE=15')

CALL HHS0CS('0DET0L=l.D-7')

CALL HHSOCS('SPRTHS=SPARSE')

CALL HHS0CS('MTSWCH=3')

CALL HHS0CS('NSSWCH=1')

C Optional tolerances for quicker convergence

C CALL HHS0CS('0DET0L=0.2D-4')

C CALL HHSNLP('C0NT0L=l.D-5')

C CALL HHSNLP('0BJT0L=l.D-5')

WRITE(*,*) 'MADE IT: START OF MIN V PROBLEM'

C OPTIMIZATION TO FIND MIN ENERGY PROPER V - first SOCS call

CALL HDS0CS(0PT2IN,DUMYIG,0PT2DE)DUMYPF,DUMYPR)
+ IW.NIW.W.NW.MAXPHS.CSTAT.MAXCS.IPCPH.DPARM.MAXDP,

+ IPDPH.NEEDED.IER)

C Transfer args for OCSEVL

DO 10 I = l.MAXCS

CSTAT2(I) = CSTAT(I)

10 CONTINUE

DO 20 I = l.MAXPHS+1

IPCPH2(I) = IPCPH(I)

IPDPH2CI) = IPDPH(I)

20 CONTINUE

DO 30 I = l.MAXDP

DPARM2(I) = DPARM(I)

30 CONTINUE

DO 40 I = i.NW

W2(I) = W(I)
40 CONTINUE

C Output YBAR and optimal solution from MEDS phase

I0UNIT=32

OPEN(IOUNIT,FILE='thrmod2d_lyb.dat',STATUS='UNKNOWN')

DO 50 I = 1,251
T = T0+(TF-T0)*(I-1)/2.5D2

Appendix A. Software Drivers 152

WRITECIOUNIT,*) YBAR1(T),YBAR2(T),YBAR3(T)

50 CONTINUE

CLOSE(IOUNIT)

OPEN(IOUNIT,FILE='thrmod2d_lds.dat',STATUS='UNKNOWN')

NPTAUX = 250

NDP = 15

NDYN =16

DTAUX = 0

IOFLAG = 10

IPHASE = 1

CALL DFILL(NDYN,1.D0,STSKL,1)
CALL AUXOUT(IPHASE,CSTAT,DPARM,NDP,STSKL,W,NW,IOUNIT,

+ IOFLAG,NPTAUX,DTAUX.DUMYPR)

CLOSE(IOUNIT)

C OPTIMIZATION TO FIND TEST FUNCTION - second SOCS call

WRITE(*,*) 'MADE IT: START OF TEST FN PROBLEM'

CALL HDS0CS(MID2IN,DUMYIG,MID2DE,DUMYPF,DUMYPR,

+ IW,NIW,W,NW,MAXPHS,CSTAT,MAXCS,IPCPH,DPARM,MAXDP,

+ IPDPH,NEEDED,IER)

C Output complete optimal solution from MI phase

IOUNIT = 32
0PEN(I0UNITJFILE='thrmod2d_lm7.dat',STATUS='UNKN0WN')

NPTAUX = 250

NDP = 14

NDYN =15

DTAUX = 0

IOFLAG = 10

IPHASE = 1
CALL DFILL(NDYN,1.DO,STSKL,1)
CALL AUXOUT(IPHASE,CSTAT,DPARM,NDP,STSKL,W,NW,IOUNIT,

+ IOFLAG,NPTAUX,DTAUX,DUMYPR)

CLOSE(IOUNIT)

END

Appendix A. Software Drivers 153

C MEDS phase driver

SUBROUTINE 0PT2IN(IPHASE,NPHS,METHOD,MSTG,NCF,NPF,NPV,NAV,
+ NGRID,INIT,MAXMIN,MXPARM,PO,PLB,PUB,PLBL,
+ MXSTAT,YO,Yl,YLB,YUB,STSKL,STLBL,MXPCON,CLB,
+ CUB,CLBL,MXTERM,COEF,ITERM.TITLE,IER)

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID,
+ INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM),
+ IER

DOUBLE PRECISION PO(MXPARM),PLB(MXPARM),PUB(MXPARM),YO(0:MXSTAT),
+ Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),
+ STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),
+ COEF(MXTERM)

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80,
+ CLBL(0:MXPCON)*80,TITLE(3)*60

DOUBLE PRECISION TO,TF
PARAMETER (T0=0.D0,TF=1.DO)

METHOD = 3
NSTG = 1
NCF(l) = 9
NCF(2) = 5
NCF(3) = 1
NPF(2) = 0
NAV = 6
NPV = 1
NGRID = 11
INIT = 1
MAXMIN = -1

C Initial and final time

Y0(0) = TO
Y1(0) = TF

C Initial guesses, v = 1, beta somewhere in the interior of [0,1]

DO 10 I = 1,14

Appendix A. Software Drivers 154

YOU) = O.DO
10 CONTINUE

Y0(15) = 1.D0

DO 20 I = 1,14

Y1U) = O.DO

20 CONTINUE

Yl(15) = l.DO

P0(1) = 0.2D0

C Fix the boundary conditions

DO 30 I = 5,9

YLBC-1,1) = O.DO
YUB(-l.I) = O.DO

30 CONTINUE

DO 40 I = 5,8

YLB(l.I) = O.DO
YUB(l.I) = O.DO

40 CONTINUE

YLB(1,9) = l.DO

C Bound BETA (avoiding singularities at 0 and 1)

PLB(l) = 0.01D0

PUB(l) = 0.99D0

C Fix the start and finish time

YLB(-l.O) = Y0(0)

YUB(-l.O) = Y0(0)

YLB(l.O) = Y1(0)

YUB(l.O) = Y1(0)

C Equality constraints

DO 50 I = 1,5

ITERM(l.I) = I

ITERM(2,I) = 1

ITERM(3,I) = 0

Appendix A. Software Drivers 155

ITERM(4,I) = -I

CLB(I) = O.DO

CUB(I) = O.DO

50 CONTINUE

C Objective function

ITERM(1,6) = 0
ITERM(2,6) = 1

ITERM(3,6) = 0
ITERM(4,6) = -6

RETURN

END

C MEDS constraint definition

SUBROUTINE 0PT2DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR)

INTEGER IPHASE,NZ,NP,NF,IFERR

DOUBLE PRECISION T.Z(NZ),P(NP),F(NF)

DOUBLE PRECISION A(4,4),B(4,1),S1,S2

DOUBLE PRECISION M(4,5),H(4,5),Q(4,4),Nmess(l,1)

C Nine ODE constraints

C Variable list: x:Z(l)-Z(4), lambda:Z(5)-Z(8), Z:Z(9),

C nu:Z(10)-Z(14), v:Z(15), beta:P(l)

INTEGER R,C

C Problem parameters

DATA ((A(R,C),C=1,4),R=1,4)/-1.D0,1.D0,0.D0,0.D0,
#-1.DO,-3.DO,O.DO,O.DO,

#0.DO,O.DO,-10.DO,1.DO,

#0.DO,0.DO,-1.DO,-3.DO/

DATA ((B(R,C),C=1,1),R=1,4)/1.D0,0.D0,1.D0,0.D0/

DATA ((M(R,C),C=1,5),R=1,4)/0.D0,1.D0,0.D0,0.D0,0.D0,

#1.DO,O.DO,O.DO,O.DO,O.DO,

#0.D0,0.D0,0.D0,0.D0,1.D0,

#0.DO,0.DO,0.DO,1.DO,O.DO/

Appendix A. Software Drivers 156

DATA ((Q(R,C),C=1,4),R=1,4)/2.D0,2.D0,-2.D0,-2.D0,

#2.DO,2.DO,-2.DO,-2.DO,

#-2.DO,-2.DO,2.DO,2.DO,

#-2.00,-2.00,2.00,2.00/
DATA ((H(R,C),C=1,5),R=1,4)/0.D0,0.D0,-4.D0,0.D0,0.D0,

#0.DO,0.D0,-4.DO,0.D0,0.D0,

#0.DO,0.DO,4.DO,0.DO,0.DO,

#0.DO,O.DO,4.DO,O.DO,O.DO/

DATA ((Nmess(R,C),C=l,l),R=l,l)/l.DO/

C x'
F(l) = A(1,1)*Z(1)+A(1,2)*Z(2)+A(1,3)*Z(3)+A(1,4)*Z(4)+B(1,1)*Z(1

#5)+M(l,l)*Z(10)+M(l,2)*Z(ll)+M(l,3)*Z(12)+M(l,4)*Z(13)+M(l,5)*Z(14

#)
F(2) = A(2,1)*Z(1)+A(2,2)*Z(2)+A(2,3)*Z(3)+A(2,4)*Z(4)+B(2,1)*Z(1

#5)+M(2,l)*Z(10)+M(2,2)*Z(ll)+M(2,3)*Z(12)+M(2,4)*Z(13)+M(2,5)*Z(14

#)
F(3) = A(3,1)*Z(1)+A(3,2)*Z(2)+A(3,3)*Z(3)+A(3,4)*Z(4)+B(3,1)*Z(1
#5)+M(3,l)*Z(10)+M(3,2)*Z(ll)+M(3,3)*Z(12)+M(3,4)*Z(13)+M(3,5)*Z(14

#)
F(4) = A(4,1)*Z(1)+A(4,2)*Z(2)+A(4,3)*Z(3)+A(4,4)*Z(4)+B(4,1)*Z(1

#5)+M(4,l)*Z(10)+M(4,2)*Z(ll)+M(4,3)*Z(12)+M(4,4)*Z(13)+M(4,5)*Z(14

#)

C lambda'
F(5) = -P(l)*q(l,l)*Z(l)-P(l)*Q(l,2)*Z(2)-P(l)*q(l,3)*Z(3)-P(l)*q
#(l,4)*Z(4)-P(l)*H(l,l)*Z(10)/2-P(l)*H(l,2)*Z(ll)/2-P(l)*H(l,3)*Z(l

#2)/2-P(l)*H(i,4)*Z(13)/2-P(l)*H(l,5)*Z(14)/2-A(l,l)*Z(5)-A(2,l)*Z(

#6)-A(3,l)*Z(7)-A(4,l)*Z(8)
F(6) = -P(1)*Q(2,1)*Z(1)-P(1)*Q(2,2)*Z(2)-P(1)*Q(2,3)*Z(3)-P(1)*Q
#(2,4)*Z(4)-P(l)*H(2,l)*Z(10)/2-P(l)*H(2,2)*Z(ll)/2-P(l)*H(2,3)*Z(l

#2)/2-P(l)*H(2,4)*Z(13)/2-P(l)*H(2,5)*Z(14)/2-A(l,2)*Z(5)-A(2,2)*Z(

#6)-A(3,2)*Z(7)-A(4,2)*Z(8)
F(7) = -P(l)*q(3,l)*Z(l)-P(l)*Q(3,2)*Z(2)-P(l)*Q(3,3)*Z(3)-P(l)*Q
#(3,4)*Z(4)-P(l)*H(3,l)*Z(10)/2-P(l)*H(3,2)*Z(ll)/2-P(l)*H(3,3)*Z(l

#2)/2-P(l)*H(3,4)*Z(13)/2-P(l)*H(3,5)*Z(14)/2-A(l,3)*Z(5)-A(2,3)*Z(

#6)-A(3,3)*Z(7)-A(4,3)*Z(8)
F(8) = -P(l)*q(4,l)*Z(l)-P(l)*Q(4,2)*Z(2)-P(l)*Q(4,3)*Z(3)-P(l)*q
#(4,4)*Z(4)-P(l)*H(4,i)*Z(10)/2-P(l)*H(4,2)*Z(il)/2-P(l)*H(4,3)*Z(l
#2)/2-P(l)*H(4,4)*Z(13)/2-P(l)*H(4,5)*Z(14)/2-A(l,4)*Z(5)-A(2,4)*Z(

#6)-A(3,4)*Z(7)-A(4,4)*Z(8)

Appendix A. Software Drivers 157

C Z>
S2 = (P(1)*Q(1,1)*Z(1)+Z(2)*P(1)*Q(2,1)+Z(3)*P(1)*Q(3,1)+Z(4)*P(1)

#*q(4,l))*Z(l)/2+(Z(l)*P(l)*Q(l,2)+P(l)*Q(2,2)*Z(2)+Z(3)*P(l)*Q(3,2
#)+Z(4)*P(l)*Q(4,2))*Z(2)/2+(Z(l)*P(l)*Q(l,3)+Z(2)*P(l)*Q(2)3)+P(l)

#*Q(3,3)*Z(3)+Z(4)*P(l)*Q(4,3))*Z(3)/2
Sl = s2+(Z(l)*P(i)*Q(l,4)+Z(2)*P(l)*Q(2,4)+Z(3)*P(l)*Q(3,4)+P(l)*Q

#(4,4)*Z(4))*Z(4)/2+(Z(l)*P(l)*H(i,l)+Z(2)*P(l)*H(2,l)+Z(3)*P(l)*H(
#3,l)+Z(4)*P(l)*H(4,l))*Z(i0)/2+(Z(l)*P(l)*H(l,2)+Z(2)*P(l)*H(2>2)+
#Z(3)*P(l)*H(3,2)+Z(4)*P(l)*H(4,2))*Z(ll)/2+(Z(l)*P(l)*H(l,3)+Z(2)*
#P(l)*H(2,3)+Z(3)*P(l)*H(3,3)+Z(4)*P(l)*H(4,3))*Z(12)/2
F(9)=sl+(Z(l)*P(l)*H(l,4)+Z(2)*P(l)*H(2,4)+Z(3)*P(l)*H(3,4)+Z(4)*P

#(l)*H(4,4))*Z(13)/2+(Z(l)*P(l)*H(i,5)+Z(2)*P(l)*H(2,5)+Z(3)*P(l)*H
#(3)5)+Z(4)*P(l)*H(4,5))*Z(14)/2+Z(10)**2*P(l)+Z(ll)**2*P(l)+Z(12)*

#*2*(2-2*P(l)+2*P(l)*Nmess(l,l))/2 +Z(13)**2*(2-2*P(l))/2+Z(14)**2*

#(2-2*P(l))/2

C Five algebraic constraints

F(10) = 2*Z(10)*P(l)+Z(l)*P(l)*H(l,l)/2+Z(2)*P(l)*H(2,l)/2+Z(3)*P(

#l)*H(3,l)/2+Z(4)*P(l)*H(4,l)/2+M(l,i)*Z(5)+M(2,l)*Z(6)+M(3)l)*Z(7)

#+M(4,l)*Z(8)
F(ll) = 2*Z(ll)*P(l)+Z(l)*P(l)*H(l,2)/2+Z(2)*P(l)*H(2,2)/2+Z(3)*P(
#l)*H(3)2)/2+Z(4)*P(l)*H(4)2)/2+M(l)2)*Z(5)+M(2,2)*Z(6)+M(3,2)*Z(7)

#+M(4,2)*Z(8)

F(12) = Z(12)*(2-2*P(i)+2*P(l)*Nmess(l,l)) +Z(l)*P(l)*H(l,3)/2+Z(2
#)*P(l)*H(2,3)/2+Z(3)*P(l)*H(3)3)/2+Z(4)*P(l)*H(4)3)/2+M(l,3)*Z(5)+

#M(2,3)*Z(6)+M(3)3)*Z(7)+M(4,3)*Z(8)

F(13) = Z(13)*(2-2*P(l))+Z(l)*P(l)*H(l,4)/2+Z(2)*P(l)*H(2,4)/2+Z(3

#)*P(l)*H(3,4)/2+Z(4)*P(l)*H(4)4)/2+M(l)4)*Z(5)+M(2,4)*Z(6)+M(3>4)*

#Z(7)+M(4,4)*Z(8)

F(14) = Z(14)*(2-2*P(l))+Z(i)*P(l)*H(l,5)/2+Z(2)*P(l)*H(2,5)/2+Z(3

#)*P(l)*H(3,5)/2+Z(4)*P(l)*H(4,5)/2+M(l,5)*Z(5)+M(2,5)*Z(6)+M(3,5)*

#Z(7)+M(4,5)*Z(8)

C Objective function is a quadrature

F(15) = Z(15)**2

RETURN

END

C MI phase driver

Appendix A. Software Drivers 158

SUBROUTINE MID2IN(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,
+ NGRID,INIT,MAXMIN,MXPARM,PO,PLB,PUB,PLBL,

+ MXSTAT,YO,Yl,YLB,YUB,STSKL,STLBL,MXPCON,CLB,

+ CUB, CLBL,MXTERM,COEF,ITERM,TITLE,IER)

INTEGER IPHASE,NPHS.METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID,

+ INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM),

+ IER

DOUBLE PRECISION PO(MXPARM).PLB(MXPARM),PUB(MXPARM),YO(0:MXSTAT),
+ Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT))YUB(-1:1,0:MXSTAT),

+ STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),

+ COEF(MXTERM)

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80,
+ CLBL(0:MXPCON)*80,TITLE(3)*60

DOUBLE PRECISION TO.TF

PARAMETER (T0=0.D0,TF=1.DO)

METHOD = 3

NSTG = 1
NCF(l) = 6

NCF(2) = 2

NCF(3) = 1

NPF(2) = 0

NAV = 8

NPV = 0

NGRID =11

INIT = 1

MAXMIN = -1

C Initial and final time

Y0(0) = TO

Y1(0) = TF

C Initial guesses

DO 10 I = 1,13

YO(I) = l.DO

10 CONTINUE

Appendix A. Software Drivers 159

Y0(14)=0.D0

DO 20 I = 1,13

Y1(I) = 0.D0

20 CONTINUE

Y1(14)=1.D0

C Boundary conditions

DO 30 I = 5,6

YLB(-l.I) = 0.D0

YUB(-l.I) = 0.D0

30 CONTINUE

DO 40 I = 5,6

YUB(1,I) = l.DO

40 CONTINUE

C Fix the start and finish time

YLB(-1,0) = Y0(0)

YUB(-1,0) = Y0(0)

YLB(1,0) = Y1(0)

YUB(1,0) = Y1(0)

C Equality constraints

ITERM(1,1) = 1

ITERM(2,1) = 1

ITERM(3,1) = 0

ITERM(4,1) = -1

CLB(l) = O.DO

CUB(l) = O.DO

ITERM(1,2) = 2

ITERM(2,2) = 1

ITERM(3,2) = 0

ITERM(4,2) = -2

CLB(2) = O.DO

CUB(2) = O.DO

C Objective function

Appendix A. Software Drivers 160

ITERM(1,3) = 0
ITERM(2,3) = 1
ITERM(3,3) = 0
ITERM(4,3) = -3

RETURN
END

C MI constraint definition

SUBROUTINE MID2DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR)

INTEGER IPHASE.NZ.NP.NF.IFERR
DOUBLE PRECISION T,Z(NZ),P(NP),F(NF),VH,VHAT,EPSIL

DOUBLE PRECISION A0(2,2),A1(2,2),B0(2),B1(2),C0(2),C1(2)

DOUBLE PRECISION M0(2,3),M1(2,3),N0(3),N1(3)

C Six ODE constraints

C Variable list: x:Z(l)-Z(4), q:Z(5)-Z(6), nu:Z(7)-Z(12), y:Z(13)-Z(14)

PARAMETER (EPSIL=0.7D0)

INTEGER R,C

C Problem parameters

DATA ((A0(R,C),C=i,2),R=l,2)/-l.D0,l.D0,-l.D0,-3.D0/

DATA ((Al(R,C),C=l,2),R=l,2)/-10.D0,l.D0,-i.D0,-3.D0/
DATA B0/1.D0,0.D0/,B1/1.D0,0.D0/,C0/1.D0,1.D0/,C1/1.D0,1.D0/

DATA ((M0(R,C),C=1,3),R=1,2)/0.D0,0.D0,1.D0,0.D0,1.D0,0.D0/

DATA NO/1.DO,0.DO,0.DO/
DATA ((Ml(R,C),C=l,3),R=i,2)/0.D0,0.D0,l.D0,0.D0,l.D0,0.D0/

DATA Nl/l.DO,O.DO,O.DO/

C First compute VH

VH = VHAT(T)

C x'
F(l) = A0(1)1)*Z(1)+A0(1,2)*Z(2)+B0(1)*VH+EPSIL*(M0(1,1)*Z(7)

#+M0(i,2)*Z(8)+M0(i,3)*Z(9))

Appendix A. Software Drivers 161

F(2) = A0(2,1)*Z(1)+A0(2,2)*Z(2)+B0(2)*VH+EPSIL*(M0(2,1)*Z(7)

#+M0(2,2)*Z(8)+M0(2,3)*Z(9))
F(3) = Ai(i,l)*Z(3)+Al(l,2)*Z(4)+Bl(l)*VH+EPSIL*(Ml(i,l)*Z(10)

#+Ml(l,2)*Z(ll)+Ml(l,3)*Z(12))
F(4) = A1(2)1)*Z(3)+A1(2)2)*Z(4)+B1(2)*VH+EPSIL*(M1(2,1)*Z(10)

#+Ml(2,2)*Z(ll)+Ml(2,3)*Z(12))

C q'
F(5) = Z(7)**2+ Z(8)**2+ Z(9)**2
F(6) = Z(10)**2+Z(ll)**2+Z(12)**2

C Two algebraic constraints
F(7) = C0(1)*Z(1)+C0(2)*Z(2)+EPSIL*(N0(1)*Z(7)+N0(2)*Z(8)

#+N0(3)*Z(9))-Z(13)

F(8) = C1(1)*Z(3)+C1(2)*Z(4)+EPSIL*(N1(1)*Z(10)+N1(2)*Z(11)

#+Nl(3)*Z(12))-Z(14)

C Obj function is a quadrature

F(9) = (Z(13)-Z(14))**2

RETURN

END

C Function to extract MEDS solution VHAT for MI phase

DOUBLE PRECISION FUNCTION VHAT(T)

INTEGER MAXPHS,NW,MAXCS,MAXDP,IPHASE,IER

PARAMETER (MAXDP = 1000,MAXPHS = 5,NW = 10000000,MAXCS=100000)

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1)

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW)

INTEGER NUMZV,LNZVEC,NUMPV,LNPVEC

PARAMETER(LNZVEC = 50,LNPVEC = 10)

DOUBLE PRECISION ZVEC(LNZVEC),PVEC(LNPVEC)

DOUBLE PRECISION T.TZERO.TFINAL

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2

IPHASE = 1

CALL OCSEVL(MAXPHS,CSTAT2,MAXCS,IPCPH2,DPARM2,MAXDP,IPDPH2,

Appendix A. Software Drivers 162

+ W2,NW,IPHASE,T,TZERO,TFINAL,ZVEC,NUMZV,LNZVEC,

+ PVEC,NUMPV,LNPVEC,IER)

VHAT = ZVEC(15)

RETURN

END

C Function to extract MEDS solution YBAR for MI phase

DOUBLE PRECISION FUNCTION YBAR(T)

INTEGER MAXPHS,NW,MAXCS,MAXDP,IPHASE,IER

PARAMETER (MAXDP = 1000.MAXPHS = 5,NW = 10000000,MAXCS=100000)

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1)

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW)

INTEGER NUMZV,LNZVEC,NUMPV,LNPVEC

PARAMETER(LNZVEC = 50,LNPVEC = 10)

DOUBLE PRECISION ZVEC(LNZVEC),PVEC(LNPVEC)

DOUBLE PRECISION T,TZERO,TFINAL

DOUBLE PRECISION C1(2),NB1

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2

PARAMETER (NB1=1.D0)

DATA Cl/l.DO.l.DO/

IPHASE = 1

CALL OCSEVL(MAXPHS,CSTAT2,MAXCS,IPCPH2,DPARM2,MAXDP,IPDPH2,

+ W2,NW,IPHASE,T,TZERO,TFINAL,ZVEC,NUMZV,LNZVEC,

+ PVEC,NUMPV,LNPVEC,IER)

YBAR = C1(1)*ZVEC(3) + C1(2)*ZVEC(4) + NB1*ZVEC(12)

RETURN

END

Appendix A. Software Drivers 163

A.4 Analysis and Presentation of Results

The above SOCS driver creates several data files as outputs. These files are suitable

for processing in MATLAB. The following MATLAB m-files process the data files

outputted by SOCS to facilitate analysis and visualization of results.

A.4.1 Detection Signal Phase Processing

This m-file reads and plots the minimum energy detection signal and the separability

index.

'/.portion of exl_lto4.m
7.exl_2_*.dat
fid = fopen('exl_2_l.dat','r');
[A21,cnt] = fscanf(fid,'7.22g',[ll,208]);
fclose(fid);

fid = fopen('exl_2_10.dat\'r>);
[A210,cnt] = fscanf (fid,''/.22g',[11,394]);
fclose(fid);

fid = fopenCexl_2_20.dat','r');
[A220,cnt] = fscanf (fid,'7.22g', [11,642]);
fclose(fid);

fid = fopenOexl_2_100.dat', 'r');
[A2100,cnt] = fscanf(fid,'7.22g',[ll,800]);
fclose(fid);

'/.gamma. dat
fid = fopenCgamma.dat' , 'r');
[G.cnt] = fscanf(fid,'7.22g',[3,20]);
fclose(fid);

7.extract vhat
vl=A21(ll,:);vlO=A210(ll,:);v20=A220(ll,:);vl00=A2100(ll,:);

7.need to rescale the vhats

7.divide by the sqrt of the objective function

Appendix A. Software Drivers 164

y,T=100 case gave negative vhat, so resign it
vl=vl/sqrt(A21(7,104));
vlO=vlO/sqrt(A210(7,197));
v20=v20/sqrt(A220(7,321));
vl00=-vl00/sqrt(A2100(7,400));

"/.extract time vector
tl=A21(l,:); tl0=A210(l,:); t20=A220(l,:); tl00=A2100(l,:);

7,plot vhats
plot(tl,vl)
plot(tl0,vl0)
plot(t20,v20)
plot(tl00,vl00)
"/„thesis plots exl21v.eps, exl210v.eps, exl220v.eps, exl2100v.eps

"/„combined plot of [0,20], [0,100] cases
plot(t20,v20,tl00,vl00)
"/.thesis plot exl2v20vl00.eps

"/„plot gamma

T=G(1,:);gamma=sqrt(G(2,:));

plot(T,gamma)

"/„thesis plot exlgammultT.eps

y.rescale the vhats and the time vectors for combined plot of all cases

vl=vl/max(vl);
vl0=vl0/max(vl0);tl0=tl0/max(tl0);

v20=v20/max(v20);t20=t20/max(t20);

Vl00=vl00/max(vl00);tl00=tl00/max(tl00);

plot(tl,vl,tl0,vl0,t20,v20,tl00,vl00)

"/„thesis plot exl2multv.eps

"/.end of routine

A.4.2 Model Identification Phase Processing

This m-file reads and plots the normal to the separating hyperplane and ybar.

°/,adex7_2m.m
fid = fopen('adex7_2_lm7.dat,,,r');

Appendix A. Software Drivers 165

[Aa71m7,cnt] = fscanf (fid, "/,22g', [15,250]);
fclose(fid);

'/.extract y0 and yl

yl7=Aa71m7(15,:); y07=Aa71m7(14,:);

'/.compute yb7 as the midpoint of segment {(ybl+yb0)/2>

yb7= (yl7+ y07)/2;

'/.extract time vector

te= Aa71m7(l,:);

'/.construct normal to hyperplane

a7= (yl7- y07)/ L2norm(yl7-y07,te);

'/.plot ybar

plot(te,yb7)

'/.thesis plot ae721yb7.eps

'/.plot a(t)

plot(te,a7)

'/.thesis plot ae721a7.eps

7,L2norm.m function to compute L2 norm

function x = L2norm(f,t)

'/.find the L2 norm of a discretized function on [0,tf]

'/.uses right approximation (as opposed to left/center)

'/.input vector function f
'/.input time vector t corresponding to' values of f

N = length(f);

if N~=length(t)

error('vectors must be same length')

end

tr=t(2:N);

tl=t(l:N-l);

dt=tr-tl;

fsq=f(l:N-l).~2;

x=sqrt(fsq*dt') ;

'/.end of routine

